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Abstract

optimal clinical setting.

The standard front-line therapy for epithelial ovarian cancer (EOC) is combination of debulking surgery and
platinum-based chemotherapy. Nevertheless, the majority of patients experience disease recurrence. Although
extensive efforts to find new therapeutic options, cancer cells invariably develop drug resistance and disease
progression. New therapeutic strategies are needed to improve prognosis of patients with advanced EOC.
Recently, several preclinical and clinical studies investigated feasibility and activity of adoptive immunotherapy in
EOC. Our aim is to highlight prospective of adoptive immunotherapy in EOC, focusing on HLA-restricted Tumor
Infiltrating Lymphocytes (TlLs), and MHC-independent immune effectors such as natural killer (NK), and cytokine-
induced killer (CIK). Adoptive cell therapy (ACT) has shown activity in several pre-clinical models. Available
preclinical and clinical data suggest that adoptive cell therapy may provide the best benefit in settings of low
tumor burden, minimal residual disease, or maintenance therapy. Further studies are needed to better define the
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Background

Epithelial ovarian cancer (EOC) is the most lethal
gynecological cancer [1, 2]. Prognosis of early-stage
ovarian cancers is favorable with approximately 90 % of
patients surviving 5 years after diagnosis [3]. However,
more than 70 % of patients are diagnosed with advanced
disease (FIGO stage III-1V) [4]. Although many patients
with advanced tumors initially benefit from integrated
surgery and platinum based chemotherapy [5, 6], recur-
rence develops in nearly 90 % of cases [7, 8].

Time to progression (TTP) after front-line platinum-
based therapy is one of the most important prognostic fac-
tors and it is important to define further treatments [9-11].
Patients with a TTP greater than 6 months (platinum sensi-
tive ovarian cancers) have a more favourable prognosis and
are liable to receive another platinum-based treatment. Pa-
tients with a TTP shorter than 6 months (platinum resist-
ant ovarian cancers) have a very poor prognosis and are
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treated with a non-platinum-derived chemotherapy such as
pegylated liposomal doxorubicin (PLD) [12, 13], topotecan
[14], etoposide [15], weekly paclitaxel [16], docetaxel [17]
or gemcitabine [12, 13]. The clinical benefit is marginal and
similar for all these agents (around 20 %).

Regardless the type of treatment, repeated therapies
favor drug-resistance through the selection of chemo-
resistant clones, allowing tumor survival and progression
and forcing patients to undergo several lines of chemo-
therapy with poor results and severe side effects.

In this context, there is a clear unmet need for alterna-
tive treatments to improve clinical outcome of advanced
EOC [5].

Increasing evidence suggests that EOC is immunogenic
and may be recognized and attacked by the immune sys-
tem [1, 18]. Spontaneous antitumor immune response was
identified in nearly half patients with advanced disease [5].
Tumor-specific lymphocytes have been identified in tumor
microenvironment, in ascites and in peripheral blood were
identified, capable of oligoclonal expansion, recognizing
tumor antigens and displaying tumor-specific cytolytic ac-
tivity in vitro [18].
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It was reported that tumor infiltrating CD8+ effector T
cells in EOC correlate with improved progression free sur-
vival (PES) [6, 19]. On the contrary, the presence of CD4 +
CD25 + FoxP3 T regulatory cells (Tregs), recruited by
tumor cells, and the activation of immune evasion mecha-
nisms (e.g., negative Immune checkpoint regulators (ie.,
B7-H1 and endothelin B repressors) are associated with
poor clinical outcome [4, 20-22]. Cancer immunotherapy
has recently emerged as a clinically effective tool in several
solid tumors [23]. Among all the possible immunothera-
peutic strategies, adoptive immunotherapy is considered
one of the most promising options. Adoptive immunother-
apy has shown encouraging activity mainly in melanoma
and soft tissue sarcomas [23] and hopes are hold for a pos-
sible extension to other histotypes such as ovarian cancer.
Adoptive immunotherapy is based on the infusion of ex
vivo expanded and/or activated immune effectors able to
identify and destroy neoplastic cells [6, 24, 25]. Adoptive
immunotherapy may be based either on HLA-restricted or
unrestricted strategies [24]. The first focuses on T lympho-
cytes capable of recognizing tumor associated antigens
(TAA) through their specific T cell receptor (TCR); the sec-
ond focuses on elements of the innate immune system that
that do not rely on HLA-mediated recognition of tumor
targets; these effectors are natural killer (NK) cells,
Lymphokine Activated Killer cells (LAKs), cytokine-
induced killer (CIK) cells. Anti-tumor lymphocytes may be
adoptively infused unmodified or previously engineered
with TAA-specific TCRs or chimeric antigene receptors
(CARs) [26]. In this review, we will focus on the prelimin-
ary clinical evidence and perspectives offered by adoptive
immunotherapy in the field of EOC. To identify ongoing
clinical trials with adoptive immunotherapy we operated a
search on clinicaltrials.gov with “ovarian cancer” and “adop-
tive” as keywords. The work is dedicated to adoptive im-
munotherapies based on unmodified immune effectors
(TILs, NK cells, LAK cells, CIK). Strategies with genetically
engineered lymphocytes will not be included in the present
work due to limited space and current absence of clinical
evidence in EOC (Fig. 1).

HLA restricted adoptive immunotherapy

Tumor infiltrating Lymphocytes (TIL)

Adoptive transfer of autologous TILs has been success-
fully tested for the treatment of metastatic melanoma
with an objective response rates (ORR) ranging up to
50 % [23, 27, 28]. Several studies confirm that T cell in-
filtration in epithelial tumors is associated with a better
prognosis [18, 29-31]. To date, several TAAs have been
described as potential targets in ovarian cancer such as
[4] New York esophageal-1 (NY-ESO-1), p53, Human
Epidermal Growth Factor 2 (HER2)/neu [32], survivin,
folate receptor a, sperm surface protein (Sp 17), Wilms
Tumor protein 1 (WT1), Mucin 1 (MUC1), melanoma
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associated antigen-3 (MAGE3), CA-125 and human tel-
omerase reverse transcriptase (hTERT) [33]. In 2003,
Zhang and colleagues reported a correlation between the
distribution of TILs and clinical outcome in EOCs. The
analysis performed in 186 frozen specimens from
advanced-stage EOCs showed that the presence of CD3
+ TILs was associated with a significant improvement in
median PFS (22.4 vs 5.8 months) and OS (50.3 vs
18 months) [18].

Other recent studies confirmed that both CD3 and CD8
+ TILs are associated with a favorable prognosis in EOC.
Milne and colleagues assessed the presence of dendritic
cells lymphocytes, MHC class I and II by tissue microarray
analysis in high-grade serous, endometrioid, mucinous
and clear cell tumors. They showed that disease-specific
survival (DFS) was associated with the CD8, CD3, FoxP3,
TIA-1, CD20, MHC class I and class II expression [34].
Similar results have been published by Clarke’s group on a
retrospective series of 500 patients [35].

An example of functional TAA targeting in EOC is
provided by in vitro cultured T lymphocytes (obtained
from EOC patients or healthy donors) specific for Hu-
man Sperm protein 17 (Sp17), which is highly expressed
in EOC [36]. Upon adoptive infusion in NOD/SCID
mice, T lymphocytes were able to eradicate EOC tumor
xenografts expressing high levels of Sp17 [37].

Emerging evidence suggests that TILs are not a mono-
morphic entity, but are phenotypically and functionally
very different in terms of persistence, memory and anti-
tumour activity. The understanding of this complexity is
essential and might be critical in future design of clinical
trials [23]. Furthermore, other important clinical issues
such as systemic administration of IL-2 or lymphodeple-
tion preparative regimens may impact of clinical trial
outcome [23].

Clinical activity of TILs

Starting from '90s, clinical studies have investigated the
efficacy of TILs in EOC. In 1991 Aoki et al. treated 17
patients with advanced or recurrent EOC [38]. Seven pa-
tients were treated with TILs after a single infusion of
cyclophosphamide. In this group, TILs represented the
first line therapy in 4 patients ineligible of standard
chemotherapy; 3 patients had a recurrent chemo-
resistant tumor. Another group of 10 patients received
TILs in association with chemotherapy. Eight patients
with a previously untreated tumor received cisplatin,
adriamycin, 5-fluorouracil and cyclophosphamide; 2 pa-
tients with a platinum-resistant tumor received an
analogue of cisplatin (254-S) as a single agent. One
complete response and four partial responses were re-
ported in the 7 patients treated with TILs infusion alone.
However, duration of response was only 3-5 months. In
the group of 10 patients treated with TILs in
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Fig. 1 Schematic representation of the main features and limits of TAA-specific and TAA-independent adoptive immunotherapy strategies against
ovarian cancer. CAR: Chimeric-antigen receptors; CIK: Cytokine-induced killer; HLA: Human leukocyte antigen; LAK: Lymphokine Activated Killer;
NK: Natural killer; TAA: Tumor associated antigen; TIL: Tumor-infiltrating lymphocytes
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combination with chemotherapy, the authors observed 7
complete and 2 partial responses. The duration of re-
sponse ranged from 13 to more than 26 months. Ac-
cording to the literature the response rate (RR) induced
by chemotherapy is about 60 % [39, 40]. In this work
TILs addition resulted in an increase of RR up to 90 %.
This difference is not statistically significant, probably due
to the small number of enrolled patients. Furthermore the
possibility that responses in combined group might be
only due to chemotherapy cannot be excluded [38].

Three years later Freedman et al. conducted a pilot
study to determine the clinical effects of intra-peritoneal
(i.p.) TIL expanded with recombinant IL-2 (rIL-2) plus i.p.
low-dose rIL-2. Eleven patients with platinum-refractory
disease were enrolled; 8 received TIL plus rIL-2 while 3
were treated with r-IL2 alone since TIL failed to expand.
Grade 3 peritonitis and anemia were reported (each one
occurred in 1 of 9 cycles of TIL plus rIL-2 and 1 of 38 cy-
cles of rIL-2 alone). Even if there were no measurable re-
sponses, in 2 patients was observed ascites reduction, one
patient had a tumor and CA-125 reduction and one had a
surgically confirmed stable disease [41].

In 1995, Fujita et. al published a case-control trial to test
the efficacy of maintenance therapy with TILs. Thirteen
patients (TILs group) with no residual tumor after pri-
mary cytoreduction and platinum-based chemotherapy,
received additional maintenance therapy with TILs ob-
tained from cancer tissues. Eleven additional patients
(control group) received standard treatment consisting in
surgery followed by platinum-based chemotherapy. In this
study, a significant difference both in 3-year OS (100 vs
67.5 % p<0.01) and 3-year disease free survival (DFS)
(82.1 vs 54.5 % p <0.05) was observed. The 3-year DFS
difference was also statistically significant in patients with
macroscopic residual tumor after surgery (76.2 vs 33.3 %,
p <0.05). The treatment was well tolerated, with no severe
complications reported [42].

Ongoing clinical studies

In 2010 the National Cancer Institute decided to assess if
a TILs based therapy, previously given to over 200 patients
with melanoma, can lead regression of digestive tract,
urothelial, breast, or ovarian/endometrial tumors and to
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investigate the safety of his treatment. This Phase II Study
Using Short-Term Cultured, autologous TILs following a
Lymphocyte Depleting Regimen in Metastatic Cancers
(NCT01174121) aims to enroll approximately 260 patients
to determine the rate of tumor regression. The results are
expected for 2019 (Table 1).

More recently, the University Health Network of
Toronto has focused its attention on patients With Plat-
inum Resistant High Grade Serous Ovarian, Fallopian
Tube, or Primary Peritoneal Cancer, starting a Phase I
Study to evaluate the Feasibility and Safety of "Re-Stimu-
lated" Autologous TILs infusion, followed by low-dose
IL-2 (NCTO01883297). Patients will receive an intraven-
ous infusion of autologous TILs, previously collected
from each patient, stimulated ex-vivo with autologous
dendritic cells (DCs) and OKT3 (anti-CD3 antibody),
and then given back to the patient. After infusion of
TILs, low-dose IL-2 therapy will be given. This study,
for which results are expected in 2023, has the primary
objective to assess the number occurrences and severity
of side effects; it also aims at measuring the clinical re-
sponse to treatment and the number of patients with an
immunity and no immunity to the study treatment.

In 2015 the Harlev Hospital has started a Phase I
Study in which 6 patients affected by metastatic cancer
will receive autologous TIL infusion after 1 week of pre-
conditioning chemotherapy with cyclophosphamide and
fludarabile. TIL infusion will be followed by IL-2 admin-
istration to support T-cell activation and proliferation.
This Study aims to determine the safety of this type of
therapy and results are expected for Jul 2017.

HLA unrestricted adoptive immunotherapy

In this section, we will focus on natural and ex vivo gen-
erated immune effectors capable of exerting antitumor
activity in a HLA-unrestricted way. Namely, we will
focus on natural Killer (NK), lymphokine-activated Killer
(LAK) and Cytokine-induced killer (CIK) cells.

NK cells and LAK cells

Natural killer cells (NK cells) are involved in innate im-
munity and tumor surveillance; they also have the ability
to recognize major histocompatibility complex (MHC)
class I or class I-like molecules on target cells through a
unique class of receptors, NK cell receptors (NKR), that
can inhibit or activate NK cell function [25]. NK cells
represent about 10 % of circulating lymphocytes, with a
CD56 + CD3- mature phenotype and wield their activity
through MHC-independent mechanisms [43]. NK cells
can be divided in CD56°"8" CD16" population, which
are characterized by low cytotoxicity but are able to pro-
duce [44] high amounts of cytokines, and CD56%™
CD16" population which mediate antibody-dependent
cellular cytotoxicity (ADDC) through CD16 [45].
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NK cells activation is dependent upon the activation of
costimulatory NK cell receptors (NKR), including
NKG2D, DNAX accessory molecule-1 (DNAM-1), 2B4,
NTB-A, CRACC, CD2, CD59, NKp80, CD94/NKG2C,
and of the natural cytotoxicity receptors (NCR: NKp30,
NKp44, and NKp46) [46]. NK cells have a well-known
capacity to kill a wide variety of tumors, like sarcoma
and leukemia [47-49] but in ovarian cancer disease the
efficacy of NK cells to kill tumor is not clear [1].
Carlsten et al. have shown that NKs derived from
healthy donor can recognize and kill in vitro ovarian car-
cinoma cells, isolated from peritoneal effusions, through
the activation of DNAM-1 signaling with complemen-
tary contributions of NKG2D and NCR receptors [46].
On the contrary in 1984 it has been shown that NK cells
derived ascitis from patients affected by EOC did not
have cytotoxic potential against autologous tumors and
NK cells derived from same patients showed reduced
cytotoxic activity against K-562 cell line [49]. In 2005
Clarke’s group demonstrated that CA125 (that is
expressed by EOC and it is used to monitor disease pro-
gression after therapeutic intervention [50]) is a potent
inhibitor of NK cell-mediated cytolysis of tumor cells
[44] through the downregulation of CD16 and CD94/
NKG2A expression. They showed that NK cells incu-
bated with CA125 for 72 h exhibited a 50-70 % decrease
in the lysis of K562 targets respect to control [44]: The
same group in 2007 published a work which demon-
strated that NK cells derived from ascites were enriched
in CD56™" CD16~ subset compared to NK cells de-
rived from autologous peripheral blood (32 versus 10 %)
[51]. Lymphokine Activated Killer cells (LAK) cells are a
heterogeneous mixture of ex vivo expanded and activated
T, NK and NKT cells which display major histocompatibil-
ity complex (MHC)-non-restricted cytotoxicity that do not
rely on HLA-mediated recognition of tumor targets. These-
natural effectors carry out their antitumoral activities with-
out identify and recognize the presence of specific TAA
expressed on the cells surface; HLA-unrestricted immuno-
therapy approach don'’t involve TCR engineering or CAR
type therapies . Phillips JH et al. showed the activity of LAK
cells against several cancer cell lines, such myelogenous
leukemia line (K562) and colon cancer cell lines [52]. In
the eighties, Rosenberg’s group first reported the use
of LAK cells to treat 25 patients with advanced can-
cer: patients received both autologous LAK cells with
high doses of interleukin-2. They observed objective
regression in 11 of the 25 cases with pulmonary or
hepatic metastases from melanoma, colon cancer, or
renal-cell cancer and complete tumor regression was
observed in primary unresectable lung adenocarcin-
oma. Unfortunately the administration of high doses
of IL2 was the cause of a strong toxicity limiting the
use of LAK cell therapy [53].



Table 1 Clinical Trials of adoptive immunotherapy in ovarian cancer

Sponsor D Condition Type of immunotherapy Primary outcome Secondary outcome Status
University Healt  NCT01883297 Recurrent, Platinum Resistant High Grade Re-stimulated Number occurrences Clinical response to treatment Recruiting
Network Serous Ovarian, Fallopian Tube, or Primary tumor-infiltrating and severity of side effects Number of patients with an
of Toronto Peritoneal Cancer lymphocytes (TILs) immunity and no immunity
to the study treatment
National Cancer NCT01174121 Metastatic cancer (digestive tract, urothelial, Re-stimulated determine the ability / Recruiting
Institute breast, ovarian/endometrial) tumor-infiltrating of autologous TIL to
lymphocytes (TILs) mediate tumor regression
Harlev Hospital ~ NCT02482090 Metastatic Ovarian Cancer Re-stimulated Determine the safety Tumor related immunoresponses — Recruiting
tumor-infiltrating of the administration of ORR
lymphocytes (TILs) TIL therapy including 0S
lymphodepleting PFS
chemotherapy and
Interleukin-2 for patients
with metastatic Ovarian Cancer
Mie University NCT02096614 Solid tumors (melanoma, head and neck cancer, MAGE-A4 Specific TCR Confirm the toxicity profile / Recruiting
ovarian cancer, esophageal cancer) Gene Transferred Confirm no replication
T Lymphocytes competent retrovirus
observed
Confirm no clonality is
observed
Evaluate persistence
and expansion of transferred
TBI-1301
Mie University NCT02366546 Solid tumors (melanoma, head and neck cancer, NY-ESO-1-specific Toxicity profile confirmation / Recruiting
ovarian cancer, synovial sarcoma, esophageal TCR gene transduced Confirm no replication
cancer) T lymphocytes competent retrovirus observed
Confirm no clonality is observed
Evaluate persistence and expansion
of transferred
TBI-1301
Memorial Sloan  NCT00562640 Fallopian Tube, Ovarian, Primary Peritoneal Wilms' tumor gene Safety and tolerability / Active, not
Kettering Cancer (WT1) peptide Mean tolerated dose recruiting

Cancer Center

sensitized
autologous T cells

of autologous WT1
peptide-specific T cells
Quantitation of alterations
in the concentration of
peptide-specific T cells in
the blood at defined
intervals post infusion
Effects of the adoptively
transferred T cells on the
growth and progression
of cancer
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Table 1 Clinical Trials of adoptive immunotherapy in ovarian cancer (Continued)

Fred Hutchinson NCT00101257 Advanced ovarian cancer Autologous CD4+ - Safety and toxicity of + Determine the antitumor Completed
Cancer Research Antigen Specific autologous CD4-positive effect of this drug in
Center T Cell Clones antigen-specific T cells these patients.

« Determine the duration
of in vivo persistence of
this drug in these patients.

Abramson NCT01312376 Recurrent Ovarian Fallopian Vaccine-Primed CD3/ - determine the feasibility and / Completed
Cancer Center Tube or Primary Peritoneal Cancer CD28-Costimulated safety
of the University Autologous T-Cells
of Pennsylvania Combined With
Vaccine Boost and
Bevacizumab
Abramson NCT02277392 Recurrent Ovarian Carcinoma, Recombinant Human - determine the feasibility and / Completed
Cancer Center Fallopian Tube or Primary Interleukin-18 safety
of the University Peritoneal Cancer (Sb-485232) Combined
of Pennsylvania With Adoptive Transfer

of Vaccine-Primed
CD3/CD28-Costimulated
Autologous T-Cells
Following Lymphodepletion

Fred Hutchinson NCT00003887 Breast Cancer, Chronic Myeloproliferative peripheral blood « Determine the feasibility of donor / Completed
Cancer Research Disorders, lymphocyte therapy lymphocyte infusion as adoptive
Center Gestational Trophoblastic Tumor, Kidney Cancer, immunotherapy

Leukemia, Lymphoma Multiple Myeloma and
Plasma Cell Neoplasm, Myelodysplastic
Syndromes, Neuroblastoma, Ovarian Carcinoma,
Sarcoma

Testicular Germ Cell Tumor

Cancer Research  NCT01212887 Breast Cancer, Colorectal Cancer, Gastric Cancer, MFE23 scFv-expressing evaluate the feasibility assess whether MFE23 Terminated
UK Lung Cancer, Ovarian Cancer, Pancreatic Cancer, autologous anti-CEA MFEz  assess the toxicity of this regimen  scFv-expressing autologous
Unspecified Adult Solid Tumor, Protocol Specific T lymphocytes, aldesleukin, in these patients. anti-CEA MFEz T lymphocytes
cyclophosphamide determine the dose required to isolated from the circulation

and fludarabine phosphate  give optimal survival of these cells  are functional.
in the circulation (recommended  determine the preliminary
phase Il dose). tumor response
evaluate the safety

University of NCT00228358 HER2-positive Breast Cancer, Recurrent Breast ex vivo-expanded HER2- « Feasibility and Safety of infusing ~ Number of patients in whom Completed
Washington Cancer, Recurrent Non-small Cell Lung Cancer specific T cells HER2 specific T cells the precursor frequency of antigen

Recurrent Ovarian, Epithelial Cancer, Recurrent specific T cells is increased by

Ovarian Germ Cell Tumor, Stage IV Breast 10-fold over baseline within

Cancer, Stage IV Non-small Cell Lung Cancer, one week after the last infusion
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Table 1 Clinical Trials of adoptive immunotherapy in ovarian cancer (Continued)

Adaptimune

NCT01567891

Stage IV Ovarian Epithelial Cancer, Stage IV Ovar-

ian Germ Cell Tumor

Recurrent Ovarian Epithelial cancer

Citoreductive surgery
followed by infusion with
NYESO-1(C259) transduced
autologous T cells.

To determine the safety and
tolerability of autologous
redirected T cell therapy

Number of patients in whom an

immune response is demonstrated

if baseline immune response was

below detection

+HER2 specific CD4+ or CD8+
precursor frequencies

« Anti-tumor effects of HER2
specific T cells

« Persistence of T cell immune
augmentation in vivo after
adoptive transfer of HER2
specific T cells

Tumor Response Recruiting
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Shuen-Kue group demonstrated that non-cytotoxic
and sublethal pretreatment of ovarian cancer cell line
(Skov-3 cells that are not sensitive to NK cells) with pac-
litaxel enhance LAK cell-mediated killing [54].

CIK cells

Cytokine-induced killer cells (CIKs), are heterogenous
ex vivo expanded T lymphocytes [55], characterized by
the presence of two main subsets: the first, with a CD3
+ CD56+ phenotype, mainly responsible for the anti-
tumor activity of CIKs and the second (CD3 + CD56-)
more similar to conventional T lymphocytes [56]. The
antitumor activity of CIKs is MHC-unrestricted and
mostly mediated by the interaction of CIKs' membrane
receptor NKG2D with MHC class I polypeptide-related
sequence MICA, MICB or members of the unique long
16-binding protein (ULBP) family (ULBP1, 2 and 3) on
tumor cells [57-59]. The expression of these proteins is
potentially induced by pathological stimuli and it is re-
ported to be associated with several tumor histotypes
[56]. Initial clinical applications demonstrated clinical
activity of CIKs in many solid cancers, such as non-
small-cell lung cancer, hepatocellular cancer, renal cell
cancer and gastric cancer, confirming a very favorable
safety profile [60, 61].

Retrospective studies have shown that NKG2D ligands
are expressed on the surface of ovarian cancer cells. Li
and colleagues analyzed 82 EOC patients, finding that
MICA/B and ULBPs are expressed in 97.6 and 82.9 % of
samples respectively and that high expression of ULBPS
is an indicator of poor prognosis [62]. Similar results
were also reported by McGilvray and colleagues who
showed that the expression of 1 RAET1 and ULBP2
NKG2D ligands correlates with a worse prognosis [63].

Preclinical studies support the antitumor activity of
CIK cells against ovarian cancer both in vitro and in
vivo.

Gritzapis and collegues have shown the possibility to
expand CIK cells from peripheral blood of patients with
ovarian cancer in the presence of appropriate cytokines
such as IL2, IFNy and OCT3 [64]. CIK cells demon-
strated in vitro cytotoxic activity against autologous tar-
gets with a perforin-mediated action [64]. In other
preclinical models, CIKs were able to kill 45 % of SK-
OV-3 human ovarian cancer cells and were able to sig-
nificantly inhibit 73 % of SK-OV-3 tumor growth in
nude mice xenografts [65].

An interesting preclinical approach, based on
antibody-redirection of CIK cells, was reported by
Negrin’s group. The authors explored CIK-mediated
killing of primary ovarian carcinoma with and without
bispecific antibodies against cancer antigen-125
(BSAbxCA125 with affinity to both CD3 and CA125)
and Her2 (BSAbxHer2, with affinity to both CD3 and
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Her2). Addition of bispecific antibodies significantly
enhanced the mean percentage of tumor specific kill-
ing in vitro models. These results were confirmed in
vivo. Adoptive infusion of CIK cells plus bispecific
antibodies (BSAbxCA125 or BSAbxHer2) resulted in
significant reduction of tumor burden and prolonga-
tion of survival compared to controls [66].

Clinical activity of NK, LAK and CIK cells agains ovarian
cancer

Geller and colleagues have recently studied in vivo expan-
sion and efficacy of adoptively transferred allogeneic NKs
in 14 ovarian and 6 breast cancer patients after a lympho-
depletion regimen [67]. The preparative regimen consisted
in high-dose cyclophosphamide and fludarabine, in seven
cases followed by a 200 cGy total body irradiation (TBI).
Lymphodepletion was previously shown to increase innate
immunity through higher homeostatic cytokines exposure
(like IL-7 and IL- 15) and reduction of the T regulatory
and myeloid-derived suppressor cells number [68, 69]. All
patients had failed four or more prior therapies for meta-
static disease. NK cell product was obtained from haplo-
identical related donors, incubated overnight in 1000 U/
mL interleukin (IL)-2 prior to infusion. A median cell dose
of 2.15x10” NK cells/kg (range 8.33 x 10°- 3.94 x 10)
was infused two days after the last dose of chemotherapy
and, in the same day, patients began the subcutaneous IL-
2 administration (three times weekly for a total of six
planned doses). Most patients reported expected grade 1
and 2 toxicities but there were also 10 unexpected severe
adverse events, including a grade 5 toxicity. The death,
was probably related to a tumor lysis syndrome associated
with NKs therapy. Moreover, two cases of passenger
lymphocyte syndrome and an autoimmune hemolytic
anemia were reported. With the addition of TBI, Geller
and colleagues observed improvement of hematopoietic
recovery [67].

As clinical activity against EOC following NKs infu-
sion, 4 patients had a partial response (PR), 8 a stable
disease (SD) and 1 a progressive disease (PD); the me-
dian time to progression (TTP) was 2 months. As IL-15
level is considered a good candidate to drive NKs expan-
sion, based on previous reports [70], Geller and col-
leagues showed that IL-15 levels were increased in
serum after lymphodepletion regimen in comparison
with baseline. However, it began to fall after two weeks
(day +14) [67]. Similarly, at the end of IL-2 therapy (day
+14 after NKs infusion), the donor NKs were soon re-
placed by recipient T regulatory (T-reg) cells. No im-
provement in rates of NKs expansion was reported in
patients treated with additional TBI. Several hypotheses
for the limited NKs proliferation were proposed: T cell
immune rejection; suppression by myeloid derived sup-
pressor cells; suppression by T-reg cells. Geller and
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colleagues suggested that the use of exogenous IL-2 to
increase in vivo NKs expansion could promote also a
host Tregs raising. In order to overcome IL-2 side effects
and to avoid Tregs expansion, they support the use of
IL-15 as a more NK-selective cytokine [67].

In 1990 Stewart et al. evaluated the safety and activity
of LAKs in 10 patients with chemo-resistant ovarian
cancers. Patients were previously treated with 6 intraper-
itoneal infusion of IL-2. Mononuclear cells were collected
by leukaphereses and LAKs were reinfused in peritoneum
with IL-2 followed by 3 additional doses of IL-2. The
dose-limiting toxicity was the accumulation of ascites and
the consequent abdominal pain; other adverse reactions
were fever, nausea and vomiting, diarrhea, anemia (red
blood cells transfusion was necessary in all cases) and per-
formance status decrease. The reported clinical response
was poor and nine patients had a disease progression; only
one patient had a partial response, followed by disease
progression after 3 months [71].

The role of maintenance therapy with CIK cells was
recently tested by Liu and colleagues. In a phase II study
the authors investigated the feasibility and the efficacy of
this therapy by measuring progression free survival
(PES) and overall survival (OS). Ninety two patients with
stage IIB- IV EOC were enrolled; all of them underwent
cytoreductive surgery followed by 6-8 courses of carbo-
platin and paclitaxel chemotherapy. One month after the
last course, 46 patients received monthly infusion of
11.82 + 1.61X 10’ autologous CIK cells, while the other
46 patients received no further treatment. A significant
increase in median PFS was observed in patients treated
with CIKs as maintenance therapy (37.7 vs 22.2 months,
p =0.004). This advantage was confirmed in all the sub-
group analyzed. OS did not reach statistical significance,
except in stages IIB-IIIB subgroup analysis, even if there
was a trend in favor of the CIKs-treated arm. Liu et al.
speculate the possible influence by the second line ther-
apy, the small number of patients and the inappropriate
follow-up time. No severe toxicities related to the CIKs
infusion were reported; the most common adverse reac-
tion was grades 1 and 2 pyrexia [55].

Conclusions

Adoptive cell-therapy has been shown to be an active
treatment for different kinds of cancers, such as melan-
oma and other solid and hematological malignancies
[31, 60, 61, 66, 72, 73]. The demonstration that the pres-
ence of inflammatory infiltrate correlates with a better
prognosis for patients with EOC, suggests that it may be
a relevant tool also in the treatment of EOC [6].

Results of several preclinical studies indicate that both
HLA unrestricted immune effectors and HLA restricted
T-lymphocytes have a cytotoxic activity against EOC
cells in vitro [46, 64].
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However, clinical research is still at an early stage and
only few evidences of efficacy of adoptive immunother-
apy in EOC have been reported, in particular regarding
the addition of a maintenance therapy with CIK or TIL
to front line standard treatments. This additional ther-
apy seems to be able to improve clinical outcome
prolonging PFS and OS in patients with a newly diag-
nosed EOC [42, 55]. On the contrary, the few published
clinical trials with NK in other clinical settings such as
multi-resistant EOC, were not able to demonstrate any
activity of adoptive immunotherapy.

An Important issue that may significantly influence the
outcome of clinical ACT is the employment of preparative
lymphodepleting regimens. The scope of such treatments
is to eliminate potentially immune-suppressive elements
and create an appropriate “immunologic space” for the in-
coming immune effectors, reducing their competition for
sustaining cytokines. Currently, there is no agreement on
what may be the optimal lymphodepleting regimen. Com-
binations of Cyclofosfamide, Fludarabine and low dose
total body irradiaton (TBI) seem to provide the best re-
sults and are therefore explored in clinical trials [23, 28].

The definition of the most suitables T cell subtypes for
ACT is current object of intense research efforts; differ-
entiation state of CD8+ T cells is inversely related to
their capacity to proliferate and persist. These findings
may be clinically relevant, and younger T cells are statis-
tically positively correlated with clinical effectiveness in
ACT trials [23, 28].

One of the possible limits to the clinical employment
of adoptive immunotherapy is represented by the com-
plexity of the procedures involved in this kind of treat-
ments. Cell therapy must be individualized, because the
therapeutic agent is represented by patient's own cells
which have to be collected, expanded and finally re-
infused, with every step performed in GMP (Good
manufacturing practice) validated facilities according to
rigorous and stringent regulations. Personalization of
adoptive cell-therapy, however, can represent an advan-
tage: each tumour has different biological and molecular
features and immunotherapies based on the use of au-
tologous cells, have potential of high specificity, not
achievable with chemotherapy.

Adoptive immunotherapy seems to be generally well-
tolerated and toxicities reported are especially related to
use of cytokines (such as IL-2) to promote cellular
expansion.

Other important potential toxicities associated with
ACT may be due to undesired antigen-recognition in
healthy organs or to massive cytokine storm even if such
events appear more likely to occur with genetically redir-
ected lymphocytes [74].

Furthermore, the systemic administration of IL-2
might induce an undesired in vivo expansion of T
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regulatory cells (Treg) that may counteract the beneficial
effect of ACT [23].

In melanoma, the presence of TILs was shown to be
functionally linked to clinical benefit obtained with check-
point inhibitors such as antibodies blocking CTLA-4 and
PD1 molecules [75-77]. Preclinical evidence on the im-
portance of PD-1 expression in Tumor-infiltrating NY-
ESO-1-specific CD8+ T cells is also available [78]. In re-
lapsed resistant/refractory ovarian cancer anti PD-1/PD-
L1 antibodies have shown promising activity with
favourable safety profile [79, 80].

On these bases, adoptive immunotherapy may poten-
tially synergize with checkpoint inhibitors treatments.
This future perspective may be even more applicable
with genetically redirected T lymphocytes as supported
by encouraging preclinical evidence [81, 82].

NK seems to be related to more severe toxicities, the
only clinical trial published, investigating NK efficacy in
patients with multi-resistant EOC reported a death for
tumor lysis syndrome, two cases of passenger lympho-
cyte syndrome, an autoimmune haemolytic anaemia and
no improvement of clinical outcome [67]. Although the
prognostic role of NK cells infiltration is still controver-
sial, with published article that suggest their negative
prognostic role [83].

In conclusion, application of adoptive cell therapy
against EOC appears as a promising perspective, not yet
sufficiently supported by convincing clinical data. It seem
reasonable that adoptive cell therapy may provide the best
benefit in settings of low tumor burden, minimal residual
disease, or maintenance therapy. These concepts should
be incorporated and integrated in the multidisciplinary
therapeutic strategy of ovarian cancer [84].

The complexity and costs required to explore clinical
applications of these approaches remain open issues that
may be faced if supported by further and stronger pre-
clinical evidences.

Further studies are therefore needed to better define
the patterns involved in the immune response to EOC
and the escape mechanisms allowing neoplastic cells
survival and proliferation, in order to develop strategies
to make adoptive immunotherapy clinically effective.
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