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Abstract 

Objective  To construct a machine learning diagnostic model integrating feature dimensionality reduction tech-
niques and artificial neural network classifiers to develop the value of clinical routine blood indexes for the auxiliary 
diagnosis of ovarian cancer.

Methods  Patients with ovarian cancer clearly diagnosed in our hospital were collected as a case group (n = 185), 
and three groups of patients with other malignant otolaryngology tumors (n = 138), patients with benign otolaryngol-
ogy diseases (n = 339) and those with normal physical examination (n = 92) were used as an overall control group. In 
this paper, a fully automated segmentation network for magnetic resonance images of ovarian cancer is proposed 
to improve the reproducibility of tumor segmentation results while effectively reducing the burden on radiolo-
gists. A pre-trained Res Net50 is used to the three edge output modules are fused to obtain the final segmenta-
tion results. The segmentation results of the proposed network architecture are compared with the segmentation 
results of the U-net based network architecture and the effect of different loss functions and region of interest sizes 
on the segmentation performance of the proposed network is analyzed.

Results  The average Dice similarity coefficient, average sensitivity, average specificity (specificity) and average 
hausdorff distance of the proposed network segmentation results reached 83.62%, 89.11%, 96.37% and 8.50, respec-
tively, which were better than the U-net based segmentation method. For ROIs containing tumor tissue, the smaller 
the size, the better the segmentation effect. Several loss functions do not differ much. The area under the ROC curve 
of the machine learning diagnostic model reached 0.948, with a sensitivity of 91.9% and a specificity of 86.9%, and its 
diagnostic efficacy was significantly better than that of the traditional way of detecting CA125 alone. The model 
was able to accurately diagnose ovarian cancer of different disease stages and showed certain discriminative ability 
for ovarian cancer in all three control subgroups.

Conclusion  Using machine learning to integrate multiple conventional test indicators can effectively improve the diag-
nostic efficacy of ovarian cancer, which provides a new idea for the intelligent auxiliary diagnosis of ovarian cancer.
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Introduction
Magnetic resonance imaging (MRI) provides multipa-
rameter multiplanar imaging with excellent soft-tis-
sue resolution and has become the imaging method of 
choice in the preoperative evaluation of ovarian cancer. 
Accurate segmentation of ovarian cancer from MRI is 
important for subsequent diagnosis and treatment [1, 2]. 
Segmentation of ovarian cancer mainly relies on manual 
outlining by radiologists, which is not only subjective but 
also time-consuming and labor-intensive [3]. Therefore, 
a reliable method for automatic segmentation of ovarian 
cancer MRI images is urgently needed. In addition, dif-
ferent imaging equipment and imaging parameters have a 
great impact on the imaging quality, which may result in 
different density distributions of ovarian cancer in MRI 
of different patients, which further increases the difficulty 
of segmentation.

MRI ovarian cancer tumor auto-segmentation has been 
poorly studied and can be grouped into the following two 
broad categories.

(1)	 Non-neural network approach [4] proposed a 
knot ovarian cancer tumor level set segmentation 
method [5] proposed a regional growth-based ovar-
ian cancer tumor segmentation method, which is 
not able to achieve fully automatic segmentation [6] 
proposed a super-pixel-based tumor segmentation 
method for ovarian cancer. The method is not fully 
automatic, and some cases need to be manually 
excluded due to the presence of uterine fibroids, 
which leads to similar DCE-MRI performance.

(2)	 Neural network-based method [7] proposed an 
ovarian cancer segmentation method, which uses 
convolutional neural networks (CNNs) to achieve 
the segmentation of the tumor region [8–10].

Res Net was proposed by [11] that The network archi-
tecture of this class adopts a deep residual connection 
framework to solve the training difficulties and accuracy 
degradation problems of deep networks, and generates 
network models with strong feature expression capabili-
ties, which are widely used in tasks such as segmentation 
and detection, but so far Res Net has not been applied to 
segmentation of ovarian cancer tumor magnetic reso-
nance images.

Image classification, object recognition, and seman-
tic segmentation are just a few of the many uses for the 
ResNet-50 model in computer vision. Some examples 
of the numerous possible uses are listed above. Its wide 
acceptance can be attributed to the fact that it serves its 
intended purpose and is also reasonably accurate.

The excellent performance on many different computer 
vision benchmarks attests to ResNet-50’s precision [12]. 

For example, using the massive ImageNet dataset, which 
contains photographs labeled in over a thousand differ-
ent ways, it achieved an accuracy of 95.6%. The reliability 
of the system was evaluated using this data set.

In order to train a model for a new type of task, trans-
fer learning can be used to leverage a previously-trained 
model. The ResNet-50 network is suitable for this tech-
nique. Ultimately, the goal of this training is to improve 
the model’s performance on the novel task.

Aiming at the MRI ovarian cancer tumor segmentation 
challenges and the shortcomings of existing segmenta-
tion methods, FCN based automatic segmentation net-
work for ovarian cancer MRI images is proposed [13]. In 
the proposed network, a ResNet50 with strong feature 
expression capability is used for feature extraction, and 
a pre-training strategy is used in the study in order to 
reduce the demand for data volume.

Dynamic contrast-enhanced magnetic resonance imaging 
(DCE-MRI) has advanced to the point where it is not only 
useful for detecting breast cancer but also for monitoring its 
development and understanding where tumors are located 
[14–17]. However, not only is this a laborious process, but 
the accuracy also relies on the radiologist’s level of experi-
ence and training. However, radiomic data are used in medi-
cal imaging and have the potential to extract non-obvious 
features of sickness. Better patient diagnosis and care is 
possible with this data. Hard-coded features, known as 
’radiomics,’ reveal crucial data about the disease at the pho-
tographed site [18]. Deep learning methods, on the other 
hand, such convolutional neural networks (CNNs), can be 
trained to automatically learn features from a dataset. In 
the field of medical imaging, in particular, CNNs perform 
better than methods based on hard-coded characteristics. 
However, by combining the strengths of these two types of 
features, the accuracy is greatly improved, which is very cru-
cial in the medical industry. Using DCE-MRI data, this work 
details the creation of a stacked ensemble of gradient boost-
ing and deep learning models for breast cancer classifica-
tion. Breast DCE-MRI image pixel data is used to calculate 
radiomics, which are then added into the model. Radiom-
ics was applied to the factor analysis before the model was 
trained to enhance the quality of the feature set and elimi-
nate any characteristics that were not helpful [19, 20].

Existing ovarian cancer markers have limited sensitiv-
ity and specificity, and it is difficult for a single indicator to 
accurately reflect the complexity of ovarian cancer patho-
genesis [21]. The malignant risk transport algorithm adopts 
the strategy of multi-indicator joint diagnosis, i.e., multi-
parameter model, and calculates the ROMA index by com-
bining glycan antigen 125 (CA125) and human epididymis 
secretary protein 4 (HE4), whose sensitivity in ovarian 
cancer diagnosis is 89%, and its specificity is 79% [22]. 
With the development of artificial intelligence, machine 
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learning is gradually applied to data analysis in the medi-
cal field [12]. Clinical laboratories can provide rich disease 
data resources for machine learning, and machine learning 
methods, by virtue of their powerful autonomous learn-
ing ability, extract the implied rules or models between test 
indicators and diseases from them, and construct a more 
complex and sophisticated multi-parameter combination 
approach [23]. Starting from the established test indicators 
of ovarian cancer patients, machine learning methods such 
as principal component analysis, genetic algorithms, neural 
networks, etc. are integrated to try to provide accurate and 
convenient decision support for ovarian cancer diagnosis.

The rest of the paper is organized as follows: Subject 
and methods section describes the subjects and meth-
ods; The research subjects come from the otolaryngology 
department, oncology department, and physical exami-
nation center of our medical center  section details the 
proposed network model; Selection of indicators section 
presents the analysis of results; Demographic informa-
tion section presents the discussion of results and Test 
items section concludes the paper.

Subjects and methods
The research subjects come from the otolaryngology 
department, oncology department, and physical 
examination center of our medical center

(1)	 Case group: First diagnosed as primary ovarian 
cancer from January 2008 to December 2017, 185 
female patients, aged 16–83 years.

(2)	 Control group:569 cases of non-ovarian cancer, 
female patients or physical examiners in the same 
period. In order to enhance the ability of the model 
to identify related diseases, 3 control subgroups 
were set up. ①138 cases of other malignant oto-
laryngology tumor, aged 27–85 years.② 92 cases of 
physical examiners without otolaryngology benign 
or malignant diseases and apparently healthy, aged 
20–84 years.

The above study subjects did not undergo surgery, 
radiotherapy or medication before enrolment, did not 
have cardiac, pulmonary, hepatic, renal and other organ 
insufficiency, did not have hematology diseases, were not 
combined with acute or chronic infectious diseases, and 
excluded pregnancy. Diagnosis was confirmed by clinical 
signs, imaging and pathology before the study subjects 
were discharged from the hospital; if there was no patho-
logical examination, it must be confirmed by two or more 
imaging evidence (CT, MRI, B-mode ultrasound, etc.) in 
agreement.

Selection of indicators
The collection was completed by the medical record 
information mining software independently developed 
by Shanghai Le jiu Medical Technology Co.

Demographic information
Epidemiological investigations have identified a variety 
of risk factors for ovarian cancer, of which three demo-
graphic characteristics that are well supported in the lit-
erature and well documented in the medical records were 
selected: age, whether or not menopausal, and number of 
pregnancies.

Test items
Twenty-eight hematology indexes with a clear relation-
ship with ovarian cancer (including those related to the 
degree of progression or metastasis of ovarian cancer) 
were selected and classified into 6 categories: (1) 8 items 
of tumor markers, including carcinoembryonic antigen 
125 (CA 125), squamous cell carcinoma-associated anti-
gen (SSC); (2) 4 blood cell-related parameters, (3) 5 items 
of sex hormones, including β Chorionic Gonadotropin 
( β- HCG), estradiol (E2), progesterone (P), luteinizing 
hormone (LH), follicle stimulating hormone (FSH); (5) 5 
biochemical indicators, including albumin (Alb), globu-
lin (Glo), prealbumin (PA), C-reactive protein (CRP), and 
fasting plasma glucose (FPG); (6) There are four indica-
tors of lipid metabolism, including triacylglycerol (TG).

HE4 is an important ovarian cancer-related tumor 
marker that has been widely used in the clinic in recent 
years, and is superior to CA125 in some cases. The 
HE4 program was launched in our hospital in 2013.The 
patients who were admitted to the hospital at an earlier 
time in this study lacked the results of the HE4 test, and 
therefore HE4 was not included in the index collection.

Statistical analyses
SPSS 25.0 was used to create a database and statistically 
describe the data. Programming with Matlab 2014a was 
used for z-score standardization, principal component 
analysis, BP neural network training and testing. ROC 
analysis was performed with Medcalc 15, AUCROC and 
two-by-two pairwise comparisons were performed using 
the De Long test. Differences were considered statisti-
cally significant at P < 0.05.

The designed network model
Preprocessing
Although the images of all patients were acquired by 
the same device, the density distribution of T2W-MRI 
still varies from patient to patient. For this reason, these 
images are normalized as follows.
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In order to investigate the effect of the degree of class 
imbalance on segmentation, the normalized images were 
cropped to obtain ROIs of different sizes covering the 
tumor region. To prevent network overfitting, the train-
ing dataset was augmented. The training images were 
rotated at an angle of 90° and 180°, respectively, and 
flipped up and down to make the training dataset five 
times the original size.

Network architecture
The network architecture consists of two parts: feature 
extraction and edge output, see Fig.  1. In the feature 
extraction part, Res Net50 is used as the basic network 
architecture, and the feature map containing multi-scale 
information is obtained through the middle layer of this 
network. Since the feature maps produced by layers with 
a step size of 32 or higher are too small in size, which can 
lead to too blurred results after interpolation, the last 
three residual modules of ResNet50, the pooling layer 
and the network fully connected layer are removed for 
this reason.

(1)Inorm =
I − Imin

Imax − Imin

In order to guide multi-scale feature learning, the edge 
output module is added to the last layer of the 3rd, 7th 
and 13th residual modules of ResNet50, which enables 
multi-scale feature extraction from image data, taking 
into account both image details and overall information. 
However, since the sizes of these feature maps are not the 
same, it is not possible to utilize the multi-scale informa-
tion by direct fusion. It is necessary to introduce a decon-
volution layer in the edge output module to Upsampling 
the feature map according to the size of the input image, 
so that feature map fusion is possible. Therefore, before the 
inverse convolution, all the feature maps are subjected to 
a dimensionality reduction operation through a convolu-
tional layer, so that the number of channels of the feature 
maps is reduced to 128, which reduces the computational 
cost while preserving the feature information. Ultimate 
the fused feature maps are dimensionality reduced by two 
convolutions to get the final segmentation result.

Loss function
Denote the training dataset as S = {(Xi,Yi), i = 1, 2, . . . ,N } , 
where the gold standard corresponding to the input image 
Xi and denote the network layer parameters as W .

Fig. 1  Architecture of the network
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In ovarian cancer tumor segmentation, there is a class 
imbalance problem, where the number of pixels in the 
non-tumor region of a T2W-MRI slice is much higher 
than the tumor region. For this reason a class-balanced 
cross-entropy loss function is used in an attempt to solve 
the problem. It balances positive and negative samples 
by introducing a class-equilibrium weight, defined as 
follows.

The class probability Pr
(

yj = 0|X;W
)

∈ [0, 1], n = 0, 1 
is given by the final classifier, which evaluates the prob-
ability that the input pixel j belongs to class n.

In order to investigate the ability of the class-balanced 
cross-entropy loss function to solve the class imbalance 
problem, the classical cross-entropy loss function and the 
Dice loss function are introduced for comparison.

Training and testing of the model
The study population was divided into two parts by 
stratified random sampling, defining 2/3 of them as the 
training group and the other 1/3 as the testing group. The 
training process of BP neural network was optimized by 
embedding genetic algorithm, and parameters such as 
the number of neurons in the hidden layer, connection 
weights and thresholds of the BP neural network were 
adaptively determined based on its parallel stochastic 
search ability. Finally, the trained model was used to pre-
dict the diagnostic results of the test group (the output 
value was a continuous variable between 0 and 1), and the 
ROC curve of the test group was plotted, and the diag-
nostic efficacy of the model was evaluated by the three 
indexes, namely sensitivity, specificity and area under the 
ROC curve AUCROC , which corresponded to the highest 
point of the Youden index, with the value of 01 being the 
main The AUCROC value was the main evaluation index.

Experiments and analysis of results
Realization
Implement the proposed network architecture using 
the publicly available Kera library. The device used is 
equipped with a workstation of NVIDIA GTX1080 Ti 
GPU, with a CUDA version of 8.0 [24].

Assessment criteria
The Dice similarity coefficient is a spatial overlap met-
ric that can be used to assess the similarity of overlap 
between segmentation results and the gold standard. 
Its value varies from 0 to 1, where 0 indicates that there 

(2)

CBCELoss = −β
j∈Y+

logePr yj = 1|X;W

−(1− β)
jǫY−

logePr yj = 0|X;W

β = |Y−|/|Y |, 1− β = |Y+|/|Y |

is no overlap between the segmentation results and the 
gold standard, and 1 indicates that they are completely 
overlapped.

Sensitivity, which can also be referred to as the true 
positive rate, takes a value in the range of 0 ~ 1. The larger 
the value, the closer the segmentation result is to the gold 
standard.

The specificity, sometimes called the true negative rate, 
also ranges from 0 to 1. The larger the value, the more 
similar the segmentation results are to the gold standard, 
and conversely, the less similar they are.

The hausdorff distance calculates the similarity 
between two sets of point sets and can be used to assess 
the difference between the segmentation results and the 
gold standard. The smaller the hausdorff distance, the 
closer the segmentation results are to the gold standard.

Where: � • � is the Euclidean distance function; P is the 
segmentation result; G is the gold standard.

Results and analyses
Segmentation performance of the U-net based network 
and the proposed network, where the optimal parameters 
of the U-net based network are set based on their paper. 
In the experiments, the network uses a class-balanced 
cross-entropy loss function, and the training and test 
images used are cropped from normalized images, both 
containing tumor tissue, and have a size of 96 × 96 pixels. 
A total of four different metrics were used to evaluate the 
segmentation results, namely DSC, sensitivity, specificity 
and HD. Table 1 shows the comparison of the segmenta-
tion results of the two networks.

(3)DSC =
2TP

2TP + FP + FN

(4)Se =
TP

TP + FN

(5)Sp =
FN

TN + FP

(6)HD(P,G) = max

(

max
p∈P

min
g∈G

�p− g�, max
gǫG

min
pǫP

�g − p�

)

Table 1  Segmentation results of the two networks

Evaluation 
indicators

U-net-based network Proposed network

DSC/% 67.59 ± 7.70 83.62 ± 10.25

Se/% 83.52 ± 19.14 89.11 ± 10.21

Sp/% 91.20 ± 7.22 96.37 ± 3.60

HD 16.81 ± 7.35 8.50 ± 5.17
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In Table 1, the average DSC, average sensitivity, average 
specificity, and average HD of the segmentation method 
proposed in this paper reached 83.62%, 89.11%, 96.37%, 
and 8.50, respectively, which improved the Dice similarity 
coefficient, sensitivity, and specificity by 16.03%, 5.59%, and 
5.17%, respectively, and reduced the HD compared to the 
segmentation method based on the U-network by 8.31 [25].

Figure  2 demonstrates the T2W-MRI segmentation 
results of four ovarian cancer tumors. Where (a) is the 
gold standard, (b) and (c) are the segmentation results 
of the U-net based network and the proposed network, 
respectively. Row 1 shows a simple example in which the 
tumor region is clearly different from normal tissue, and 
the segmentation results of both networks are similar to 
the gold standard. The tumor in row 2 is ring-shaped, and 
the proposed network is able to accurately segment this 
shape of ovarian cancer, while the U-net-based network 
shows over-segmentation. Rows 3 and 4 are cases where 
the demarcation line between the tumor region and the 
normal tissue is blurred, and the over-segmentation phe-
nomenon of the U-net-based network is obvious, and 
some normal tissue regions are incorrectly segmented 
as tumor regions, while the proposed network does not 
show mis-segmentation. Compared with the U-net-based 
network, Fig.  2 visually shows the effectiveness of the 
proposed network for T2W-MRI segmentation of ovar-
ian cancer tumors, especially for the complex cases with 

blurred boundaries between tumor regions and normal 
tissues, the proposed method is more effective.

The images were first cropped to 96 × 96, 192 × 192, 
and 320 × 320pixel sizes, respectively. Then 3 different 
types of networks are constructed based on the 3 dif-
ferent loss functions described earlier, and each type of 
network can be divided into 3 networks based on the size 
of their input images. In this way 9 different networks 
are designed, and then these networks are trained using 
cropped images of corresponding sizes. The results are 
shown in Fig. 3 that all sizes of input images, there is no 
significant difference between the 3 loss functions. No 
matter which loss function is based on, the network seg-
mentation performance decreases as the input image size 
increases. The optimal segmentation results are obtained 
when the ROI region size is 96 × 96 pixels.

Feature dimensionality reduction of test metrics
The levels of the indicators in the ovarian cancer group 
were compared with those in the control group, and 
the results are shown in Fig.  4. The gradient change of 
the color blocks from blue to red in the heat map cor-
responds to the average level of the indicators from low 
to high. This shows that the average levels of E2, P, AGR, 
PA, and TC in the ovarian cancer group were lower than 
those in the control group, while other indicators were 
higher than those in the control group as a whole. Prin-
cipal component analysis was used to filter the redundant 
features in the data and refine the core features to explain 
the differences between the samples. The three principal 
components with the largest eigenvalues were selected 
to represent the information of the original indicators, as 
shown in Table 2. The expressions of the first three prin-
cipal components are.

The larger the absolute value of the weight coefficient 
before the test indicator, the larger its contribution to the 
principal component. As can be seen from the expres-
sion of the principal components, principal component 
1 mainly reflects the levels of CA125, CA15-3, CA72-4, 
and E2 and P, which can be categorized as gynecological 
tumors markers and hormone levels. By analogy, princi-
pal component 2 reflects glucose and lipid metabolism, 
and principal component 3 reflects inflammatory status. 
The principal component scores for each sample were 
calculated for multidimensional data visualization, see 
Fig.  5. Observe the subgroups of the three-dimensional 
scatters, it was found that these principal components 
demonstrated the differences between the ovarian cancer 
group and the control group more clearly.

(7)
P1 = 0.616A1 + 0.662A2 + · · · + 0.145F3
P2 = 0.237A1 + 0.277A2 + · · · − 0.004F3
P3 = 0.043A1 + 0.047A2 + · · · − 0.854F3

Fig. 2  T2W-MRI segmentation results of ovarian cancer tumors
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Evaluation of machine learning model training 
and diagnostic performance
The error curves converge quickly to a near-optimal solu-
tion, and have remained stable since then, indicating that 
the genetic algorithm optimizes the training parameters 
to achieve the desired results.

Blind prediction of the test group (62 ovarian can-
cer samples and 191 control samples) using the model 
constructed for the training group (123 ovarian can-
cer samples and 378 control samples) described above 
was compared with the diagnostic efficacy of CA125 in 
the test group, as shown in Fig.  6. The AUCROC of the 
machine learning diagnostic model versus single CA125 

was 0.948 and 0.746 (P < 0.01), the sensitivity was 91.9% 
and 74.2%, and the specificity was 86.9% and 73.3%, 
respectively, which significantly improved the diagnostic 
efficacy of ovarian cancer in combination with a multiple-
indicator machine learning model compared with the tra-
ditional CA125.

Diagnostic efficacy of models distinguishing 
between different stages of ovarian cancer and individual 
control subgroups
After verifying the total diagnostic efficacy of distinguish-
ing ovarian cancer from the overall control group, to fur-
ther investigate the generalization ability of the model in 

Fig. 3  Trend of model segmentation results with image size based on different loss functions

Fig. 4  Heat map of test indicator levels in ovarian cancer group and control subgroups
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testing the change of the population type, the diagnostic 
efficacy of the model in distinguishing ovarian cancer in 
early stage (FIGO stage I-II) and advanced stage (FIGO 
stage III-IV) from the overall control group was com-
pared, and as shown in Fig.  7. As shown in Fig.  7, the 
sensitivities and specificities of early and advanced stage 
AUCROC were 0.944 and 0.955, respectively, and the sen-
sitivities and specificities were very close to each other.

Discussion
The secretive anatomical location of the ovary makes it 
difficult to implement intuitive examination methods 
such as tissue biopsy and luminal exploration, resulting 
in no improvement in the survival rate of ovarian can-
cer in China in the past 15 years [26]. Currently, there 
is no mature non-invasive diagnostic method for ovar-
ian cancer, and vaginal ultrasound and serum CA125 are 
commonly used to screen for ovarian cancer in clinical 
practice, which are both plagued by the problems of low 

sensitivity and specificity. The search for a better multi-
indicator combined diagnostic method has become the 
most promising breakthrough to improve the detection 
rate of ovarian cancer.

The booming development of artificial intelligence and 
machine learning technology provides a brand-new way 
for disease diagnosis [27]. As the most classical and active 
method in the field of machine learning, artificial neural 
network connects a number of neuron nodes with pro-
cessing function according to a certain network structure 
by simulating the behavioral characteristics of the human 
brain, so that it can deal with fuzzy data or complex non-
linear mapping problems, and shows high inclusiveness 
to data noise caused by inconsistency of examination 
equipment and pathophysiological fluctuations. A num-
ber of studies on the use of machine learning methods 
such as neural networks for assisted diagnosis and grad-
ing of cancer have emerged in the medical community, 
and in general have demonstrated superior performance 
to traditional multivariate statistical classifications such 
as Logistic Regression Analysis and Fisher’s Discriminant 
Analysis [28]. In this study, in order to simplify the input 
features of the neural network, the principal component 
analysis, which has a better effect of feature dimension-
ality reduction processing, is chosen as the predecessor 
system. At the same time, in order to solve the short-
comings of BP neural network, such as slow training 
speed and easy to fall into the local minimum, the step 
of genetic algorithm optimization is added. The above 
improvements make the total diagnostic performance 
of the integrated machine learning model reach a high 
standard with satisfactory results.

In selecting the indicators to be included in the model, 
this study followed the principles of economic practi-
cality and localization. In recent years, some markers 
for novel ovarian cancer have been proposed at home 
and abroad, but most of them are histological in nature, 
with high testing costs and complex data analysis, and 
are far from forming a streamlined test like routine test 
items, thus lacking clinical practicality [29]. In contrast, 
the results of routine clinical test indicators are easy to 
obtain, facilitate inter-laboratory comparison, and meet 
the requirements of saving medical resources.

The demographic characteristics included in the model 
have all been documented to support their association 
with ovarian cancer. Although the exact cause of ovar-
ian cancer is not fully understood, multiple risk factors 
have been identified through numerous epidemiological 
studies. The age distribution of ovarian cancer shows a 
certain pattern, with a rapid increase in ovarian epithe-
lial cancer after the age of 40 years, with a peak age of 
50–60 years and a gradual decline by the age of 70 years. 

Table 2  Eigenvectors corresponding to the first 3 principal 
components

Index Number Principal 
component 
1

Principal 
component 
2

Principal 
component 
3

CA125 A1 0.616 0.237 0.043

CA15-3 A2 0.662 0.077 -0.047

CA72-4 A3 0.658 0.099 0.011

CA19-9 A4 -0.017 0.010 0.088

CEA A5 0.191 0.005 -0.047

AFP A6 -0.083 0.173 -0.023

SF A7 0.263 0.260 0.215

SSC A8 0.111 -0.015 -0.046

NLR B1 0.037 -0.034 0.037

PLR B2 0.173 0.646 -0.008

RDW B3 0.687 0.082 0.094

Fib C1 0.647 0.100 0.208

DD C2 0.005 0.041 -0.076

β-HCG D1 -0.225 -0.030 0.028

E2 D2 0.693 0.117 0.148

P D3 0.648 0.125 0.220

LH D4 -0.296 -0.267 -0.237

FSH D5 0.080 0.704 0.030

AGR​ E1 0.510 0.307 0.217

PA E2 0.143 -0.059 0.014

CRP E3 -0.162 -0.086 -0.849

FPG E4 0.267 0.600 0.124

TG F1 0.277 0.613 0.008

TC F2 -0.124 -0.299 -0.079

LDL-C/HDL-C F3 0.145 -0.004 0.854
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Statistics show that the incidence of ovarian cancer in 
women of childbearing age gradually decreases as the 
number of pregnancies increases, while childless women 
are more likely to develop ovarian cancer. In addition, 
delayed menopause is also a risk factor for ovarian can-
cer [28]. The prevailing explanation is that the above 
demographic risk factors are often accompanied by per-
sistent ovulation or increased ovulation, which leads 
to ovarian epithelial damage and prolonged mitogenic 
stimulation, which in turn induces malignant transfor-
mation of epithelial cells.

The test indicators included in the model were rich 
in information and covered a variety of physiological 
perspectives. 3 principal components distilled most 

of the characteristics of the 28 test indicators, which 
were basically in line with the medical community’s 
knowledge of ovarian cancer. The relationship between 
gynecological tumors markers and sex hormones and 
ovarian cancer, as reflected in principal component 1, 
has been very clear and does not need to be repeated. 
Blood glucose and lipid metabolism reflected in prin-
cipal component 2 are emerging hotspots in the field 
of ovarian cancer research. Poor blood sugar control 
increases the risk of cancer, and many studies have 
found that metformin, the first-line drug for diabetes, 
can have a therapeutic effect on ovarian cancer [29]. It 
is widely believed that diabetes induces ovarian can-
cer by releasing excessive insulin and disturbing the 

Fig. 5  Distribution of the ovarian cancer group and the control group in the space of the first 3 principal component components



Page 10 of 12Feng ﻿Journal of Ovarian Research           (2024) 17:45 

balance of sex hormones. In recent years, some cellular 
mechanisms and metabolic pathways of hyperglycemia 
carcinogenesis have been proposed one after another, 
opening up a new way of thinking for the prevention 
and treatment of ovarian cancer. More and more evi-
dence demonstrate that obesity and lipid metabolism 
disorders are important risk factors for ovarian can-
cer and can promote ovarian cancer metastasis, and 
obesity is accompanied by increased TG and LDL-C/
HDL-C. In order to meet the needs of rapid growth 
of cancer cells, a large amount of TC is consumed for 
the synthesis of new cell membranes, which may result 
in lower TC in ovarian cancer patients. Inflammation, 

which is mainly reflected by principal component 3, is 
ranked as the seventh most important biological fea-
ture of malignancy [30]. Inflammatory environment is 
inextricably linked with tumor development, providing 
advantageous conditions for tumor growth, invasion 
and metastasis with inflammatory environment. There-
fore, in the clinical auxiliary diagnosis and differential 
diagnosis of ovarian cancer by means of tumor mark-
ers, it is recommended to refer to blood glucose, lipid 
metabolism, and CRP, NLR, RDW, and other indicators 
for evaluating inflammatory response.

The setting of the control group is a key factor in 
determining the performance of the diagnostic model. 
Considering that CA125, as the first marker of ovar-
ian cancer, has increased in many gynecological benign 
diseases (Adenomyosis, endometriosis, gynecological 
inflammation, etc.) and some malignant tumor dis-
eases (fallopian tube cancer, endometrial cancer, cer-
vical adenocarcinoma, etc. Three control subgroups of 
patients with benign gynecological diseases and normal 
physical examination. Compared to similar studies that 
only use benign ovarian tumors or healthy women as 
controls, the control group in this study covers a wide 
range of diseases, undoubtedly improving the diag-
nostic difficulty of the model and being closer to clini-
cal needs. It is worth noting that the model’s ability 
to identify other malignant gynecological tumors is 
slightly weaker than the other two control subgroups. 
This model maintained a certain degree of differentia-
tion ability in all three control subgroups, overcoming 
the shortcomings of CA125 in the differential diagnosis 
of related diseases. Similarly, considering that CA125 
is not significantly expressed in early ovarian cancer 
patients, validation of the early and late stages popula-
tions has demonstrated that this model effectively com-
pensates for the insufficient diagnostic ability of CA125 
in early ovarian cancer.

Conclusion
In this study, an ovarian cancer diagnostic model 
integrating multiple machine learning is established. 
The mainstream neural network diagnostic model is 
improved, and the principal component analysis and 
genetic algorithm are used to solve the two difficult 
problems of feature downgrading and training param-
eter optimization, respectively, to improve the learn-
ing ability and classification accuracy of the model. 
On the one hand, the secondary development of exist-
ing data resources is carried out to explore the diag-
nostic use of many routine test indicators to achieve a 
high degree of synergy and fusion; on the other hand, 

Fig. 6  Diagnostic efficacy test for ovarian cancer

Fig. 7  Diagnostic efficacy of ovarian cancer and various control 
subgroups
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three control subgroups are set up to enhance the dis-
criminative ability of the model for related diseases. 
The model has been tested and shown to significantly 
improve the diagnostic efficacy of ovarian cancer, with 
less interference from the stage of ovarian cancer and 
the type of control subgroups. There is still a long way 
to go for the clinical translation of the research results, 
which not only requires the medical units to dock the 
data mining system and cloud platform to provide the 
underlying technical support for the model, but also 
requires the expansion of the training sample size and 
the inclusion of more test indexes, such as HE4, and 
even the imaging data at a later stage in order to pro-
mote the iterative upgrading of the diagnostic perfor-
mance of the model.
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