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prognostic model based on tumor immunity
for patients with ovarian cancer
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Abstract

Background Both immune-reaction and IncRNAs play significant roles in the proliferation, invasion, and metastasis
of ovarian cancer (OC). In this study, we aimed to construct an immune-related INncRNA risk model for patients with
OoC.

Method Single sample GSEA (ssGSEA) algorithm was used to analyze the proportion of immune cells in The Cancer
Genome Atlas (TCGA) and the hclust algorithm was used to conduct immune typing according to the proportion

of immune cells for OC patients. The stromal and immune scores were computed utilizing the ESTIMATE algorithm.
Weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) analyses were
utilized to detect immune cluster-related IncRNAs. The least absolute shrinkage and selection operator (LASSO)
regression was conducted for IncRNA selection. The selected IncRNAs were used to construct a prognosis-related risk
model, which was then validated in Gene Expression Omnibus (GEO) database and in vitro validation.

Results We identify two subtypes based on the ssGSEA analysis, high immunity cluster (immunity_H) and low
immunity cluster (immunity_L). The proportion of patients in immunity_H cluster was significantly higher than that in
immunity_L cluster. The ESTIMATE related scores are relative high in immunity_H group. Through WGCNA and LASSO
analyses, we identified 141 immune cluster-related IncRNAs and found that these genes were mainly enriched in
autophagy. A signature consisting of 7 IncRNAs, including AL391832.3, LINC00892, LINC02207, LINC02416, PSMB8.AST,
AC078788.1 and AC104971 .3, were selected as the basis for classifying patients into high- and low-risk groups. Survival
analysis and area under the ROC curve (AUC) of the signature pointed out that this risk model had high accuracy in
predicting the prognosis of patients with OC. We also conducted the drug sensitive prediction and found that rapa-
mycin outperformed in patient with high risk score. In vitro experiments also confirmed our prediction.

Conclusions We identified 7 immune-related prognostic INcRNAs that effectively predicted survival in OC patients.
These findings may offer a valuable indicator for clinical stratification management and personalized therapeutic
options for these patients.
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Introduction

Ovarian cancer (OC) is one of the most lethal cancers
*Correspondence: with high mortality. By 2020, more than 300,000 new
2‘;;”;:031"";6 o cases of OC are expected to occur worldwide, accounting
Gyneco\ogleepartment 2, Cangzhou Central Hospital, No. 16, Xinhua for 3.6% of all cancer diagnoses, with more than 190,000
West Road, Yunhe District, Cangzhou, Hebei Province 061000, China deaths expected [1]. Moreover, due to its insidious clini-

cal presentation and no effective screening method in
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the early stage, most cases (almost 75%) are diagnosed
at late stage, resulting in a poor 5-year survival rate [2].
Despite advances in combination chemotherapy, targeted
therapy, and intraperitoneal chemotherapy, 80% of OC
patients initially respond to treatment, chemotherapy
resistance followed by recurrent disease remains com-
mon in OC [3]. Therefore, early diagnosis and treatment
are crucial to improve the quality of life and survival rate
of OC patients. The advances have demonstrated that
OC with sufficient heterogeneity contributes to treat-
ment failure and a poor prognosis [4]. Consequently, to
explore and establish a reliable prognostic model of OC is
an urgent problem to be solved to guide more appropri-
ate clinical treatment and improve the prognosis of OC.

Long noncoding RNAs (IncRNAs) are a family of non-
protein-coding RNAs longer than 200 nucleotide [5].
Recent studies have demonstrated that abnormal expres-
sion of various IncRNAs has been detected to play key
roles in tumorigenesis and progression [6, 7]. The pres-
ence of IncRNAs is closely related to the recurrence,
metastasis and prognosis of OC, suggesting that IncR-
NAs can be used as new potential molecular markers
for tumor prognosis. Zheng et al. reported that IncRNAs
involved in m6A regulation (LI-m6As) can independently
predict the OS and therapeutic value of OC [8]. However,
IncRNAs involved in the immune response of OC remain
unclear.

Although the genetic and epigenetic changes in
tumor cells are crucial to the oncogenesis and progress
of tumors, accumulating evidence shows that the inter-
action between tumor cells and its surrounding normal
cells also plays an important role [9]. The tumor microen-
vironment (TME) is a heterogeneous system composed
of cancer cells, extracellular matrix, immune cells, as well
as other molecules [10]. As the major cellular compo-
nents of the TME, the immune infiltrating cells and stro-
mal cells are getting more and more attention. Evaluation
of the status of these two types of cells in TME will con-
tribute to more accurate diagnosis and prognosis evalu-
ation of tumor patients. Immunity is an important part
of TME. Therefore, understanding the immune-related
characteristics of OC is of great significance for its risk
stratification and targeted therapy [11]. The Estimation
of Stromal and Immune cells in Malignant Tumor tissues
using Expression data (ESTIMATE) method has been
successfully applied to the quantitative analysis of TME
of various tumors, and its effectiveness has been proved.
Up to now, although many studies have analyzed OC
patients from the perspective of immune cell infiltration
[12], there is a lack of joint exploration of the relationship
between OC and immunity from many immune aspects,
such as immune-related genes, immune cell infiltration
and transcription factors (TFs).
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In our study, we downloaded the expression profile
of OC patients from the TCGA database and divided
tumor samples from TCGA-OC into high immunity
(immunity_H) and low immunity (immunity L) group
through single sample gene set enrichment analysis
(ssGSEA). Then, we further revealed the key IncRNA
that played important roles in this immune group by
WGCNA and successfully classified OC patients into
two subtypes. Last but not least, we constructed a nomo-
gram that would be convenient for clinicians to judge the
prognosis of OC patients. This risk model was externally
validated with GEO database. Immune-related IncRNAs
may be potential biomarkers and provide new ideas for
immunotherapy.

Methods

Data collection

The RNA-sequence profiles and corresponding clini-
cal data of 379 patients with ovarian cancer were down-
loaded from TCGA (https://portal.gdc.cancer.gov/) and
GEO (https://www.ncbi.nlm.nih.gov/geo/) (GSE17260,
n=110; GSE14764, n=>55). Meanwhile, the correspond-
ing clinical information of OC patients, including patient
age, grade, stage, status and histological type of tumor,
were also downloaded. We processed the related data of
TCGA and GEO datasets through perl (strawberry-perl-
5.30.0.1-64b it) and R software, making the data easy to
understand and visualize. The IncRNAs were set as up-
regulated-IncRNAs with logFC>1 and P-value<0.05
and down-regulated-IncRNAs with with logFC<-1 and
P-value<0.05. Both the DEGs obtained were then ana-
lyzed for expression differences.

Implementation of single-sample gene set enrichment
analysis (ssGSEA)

Single Sample Gene Sets Enrichment Analysis (ssGSEA)
was performed on TCGA-OC samples based on signa-
ture genes represented by 29 immune cells or immune-
related functions using R packages (“GSVA’, “limma’,
“GSEABase”) [13]. According to the immune charac-
teristics of 379 TCGA-OC samples, the samples were
divided into two subtypes, including the high immu-
nity group (Immunity H) and the low immunity group
(Immunity_L) by using “hclust” (R package) [14]. The
bio-similarity of tumor-infiltrating immune cells was
estimated using the multidimensional scaling and Gauss-
ian fitting model.

Verification of the effectiveness of immune grouping

The Stromal Score, Immune Score, ESTIMATE Score,
and Tumor Purity were also analyzed by ESTIMATE
algorithm based on transcriptome expression profiles of
ovarian cancer to verify the effect of ssGSEA grouping
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and to draw clustering heatmap and statistical map [15].
The gene expression level of human leukocyte antigen
(HLA) were used to verify the differences between the
two groups. The CIBERSORT deconvolution algorithm
was used to accurately determine the composition of
immune cells in large tumor sample data from mixed cell
types, and the DEGs of the two groups was verified again.

WGNCA for the transcriptome of ovarian cancer

WGCNA was used to recognize the relationship between
co-expressed IncRNA modules and immune cluster.
Module eigengenes (MEs) were defined as the first prin-
cipal component of each IncRNA module and adopted as
the representative of all IncRNA in each module. Gene
significance (GS), as the mediator p-value for each gene,
represented the degree of linear correlation between gene
expression of the module and clinical features. Cluster
related modules were defined as P <0.01 and the higher
GS value was extracted for further analysis.

Comparative analysis of GO and KEGG pathways in key
module

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Gene Ontology (GO) functional analyses were used
to examine the functions of key IncRNA in the module
from WGCNA. The IncRNAs were grouped into three
categories derived from the findings of the GO analy-
sis: biological processes (BP), molecular functions (MF),
and cellular components (CC). The R packages “limma,
“org.Hs.eg.db,” “dose;” “clusterprofiler; and “enrichplot”
were employed. It was determined which pathways were
active in the high- and low-risk groups using IncRNA set
enrichment analysis (GSEA). There was statistical signifi-
cance when | NES |>1 and FDR q<0.05 were used.

Construction of the module related risk signature

We first performed unsupervised clustering analysis
with the “ConsensusClusterPlus” package. The sam-
ples were classified into different subtypes based on the
expression of key IncRNA. LASSO is a regularization
and descending dimension method which can be used
in biomarker screening for survival analysis combined
with the Cox model [16]. To further evaluate the prog-
nostic impact of these key IncRNAs in WGCNA module
and their significance in survival status, we employed
Cox regression analysis with the cut-off P-value of
0.01. Prognosis-related DEGs were then extracted and
employed for the subsequent the LASSO analysis, which
could narrow down the candidate IncRNA with the
minimum criteria of penalty parameter (\) and further
generate a multiple-IncRNA signature. After central-
izing and standardizing the expression value of TCGA-
OC cohort, we calculated the risk score of each sample
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and obtained its formula=coefficient IncRNA1 expres-
sion of IncRNA1 + coefficient IncRNA2 expression of
IncRNA2 + ... 4 coefficient IncRNAs expression of IncR-
NAn. According to the median risk score, we separated
OC samples into 2 groups (high- and low-risk) and per-
formed Kaplan—Meier analysis to compare overall sur-
vival (OS) between different risk groups. The “timeROC”,
“survival’, “survminer’; and “survivalROC” packages were
used to perform 1-, 3-, 5-year receiver operating charac-
teristic (ROC) analysis of this prognostic signature and
compared the area under the ROC curve (AUC) of this
signature and other clinicopathological traits.

Immune infiltration analysis

Analyzing the infiltration of immune cells in cancer has
a crucial guiding role in disease research and treatment
prognosis prediction. CIBERSORT is an algorithm for
deconvolution of the expression matrix of immune cell
subtypes based on the principle of linear support vector
regression, and the LM22 eigengene matrix can be used
to predict the degree of 22 kinds immune cells infiltra-
tion in all samples of a dataset [17]. We also used the
CIBERSORT algorithm to evaluate the abundance of 22
kinds immune cell species and analyze the relationship
between hub- IncRNA and different immune cells based
on the dataset.

Construction of the comprehensive predictive model

To evaluate whether this signature was an independently
predictive factor for OC prognosis, we entered this sig-
nature and clinicopathological features into the univari-
ate and multivariate Cox regression analysis. Moreover,
by integrating of this signature and clinicopathological
characteristics, we constructed a quantitative method by
which clinicians could predict OC patients’ OS.

Prediction of the half-maximal inhibitory concentration
(1C50) for different risk groups

The effect of chemotherapy was predicted by R package
“pRRophetic” [18], which was based on a ridge regression
model to calculate the half-maximal IC50 of drugs.

Wound healing and transwell assays

Cell migration was detected by wound healing and tran-
swell assays. Cells were seeded into 6-well plates and cul-
tured until the confluence reached 95%. A sterile 10 pl
pipette tip was used to generate a scratch through each
well. The wound closure was observed after 0 h and 24 h
and photographed under a microscope (Olympus, Tokyo,
Japan). For cell migration assays, ovarian cancer cell lines
(SKOV3 and A2780) were added to the upper chambers
in Dulbecco’s modified eagle medium (DMEM) contain-
ing 1% fetal bovine serum (FBS). The lower chambers
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were filled with DMEM containing 20% FBS. After a 24-h
incubation, the upper chambers were fixed with metha-
nol at room temperature for 30 min and stained with
crystal violet staining solution for an additional 30 min.
The cells that passed through the membrane were
counted under a Leica microscope (magnification, x 100).

MTT assay

Cell (1 x 10°) viability was determined by MTT Kit (Bey-
otime, Shanghai, China). The cells were seeded in 96-well
plates and incubated for 24, 48, or 72 h (h). 10 uL MTT
was added with for 4 h. Then, 100 pL. DMSO was added
to each well and incubated with for 2 h. The optical den-
sity (OD) value was measured at 490 nm wavelength and
each experiment was repeated for three times.

Animal model of tumor xenograft

Four-week-old female BALB/C nude mice were pur-
chased from the Charles River Company. All experiments
were performed in accordance with the official recom-
mendations of the Chinese animal community. Ovarian
cancer cell lines SKOV3 cell lines were established in
nude mice. The suspension of the two groups, contain-
ing 2 x 10° cells, was injected into the abdominal cavity
(5 mice for each group). On the 30th day after intraperi-
toneal injection, mice were sacrificed by cervical decapi-
tation, and mice models died before being sacrificed were
excluded. Peritoneal spreading and metastatic tumor
numbers were then counted and photographed.

Statistical analysis

All data calculations and statistical analyses were per-
formed using R programming (https://www.r-project.
org/, version 4.0.2). For comparison two groups of con-
tinuous variables, independent Student ¢-tests were used
to calculate the differences between normally distributed
variables, and Mann—Whitney U-tests were used to cal-
culate the differences between non-normally distributed
variables. ROC curves were plotted using tdROC pack-
age, and the AUC was counted to estimate the accuracy
of risk score in prognosis. All the bilateral statistical P
values were statistically significant at P<0.05.

Results

Identification and preliminary evaluation of two subtypes
of OC

According to the immunological characteristics of 379
tumor samples in the TCGA-OC cohort, we divided
them into high immunity group (Immunity H) and low
immunity group (Immunity L) based on 29 immune
gene sets along with ssGSEA algorithm. R packages
(“estimate’, “limma”) were used to calculate the Immune

score, Stromal score, ESTIMATE score and Tumor Purity
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of the two subtypes (Fig. 1A). The heatmap of immune
responses based on the ESTIMATE algorithms and sin-
gle-sample GSEA (ssGSEA) is depicted in Fig. 1B. We
further used tSNE algorithm for clustering analysis of
TCGA-OC and obtained similar classification results
(Fig. 1C). In addition, the results revealed the Immune
Score, Stromal Score, and ESTIMATE Score of the
Immunity_H was higher than that of the Immunity_L.
Moreover, the violin plot also showed significant differ-
ences in Immune Score, Stromal Score and ESTIMATE
Score between the two subtypes (Fig. 1D). We further
explored the expressions of HLA genes between the two
subtypes and discovered that the expressions of all HLA
genes in Immunity_H were significantly higher than that
in Immunity_L (Fig. 1E). These results illustrated the sig-
nificance of our classification of OC into two subtypes,
which could largely distinguish the characteristics of OC.

Detection of immunity-related module and hub genes

by WGANA

In WGCNA analysis, we identified 13 co-expres-
sion modules and analyzed their association with the
immune-related cluster from ssGSEA. Based on the
IncRNAs, a co-expression network was established by R
package “WGCNA’, which could reveal the modules and
genes that were significantly associated with the immu-
nity cluster (Fig. 2A). In this study, f=5 was the best
choice for soft thresholds to construct a scale-free net-
work (Fig. 2B). We next visualized the gene network with
the meta-modules (Fig. 2C). After adjusting the param-
eters of WGCNA, we classified the DEGs into 13 mod-
ules (Fig. 2D). The results indicated that purple module
was the most correlated module of immunity-cluster
(r=0.69, P=7e-34, Fig. 2E). There were 141 genes in
the purple module (Table S1). In the module-trait anal-
ysis, 8 genes with GS value>0.3 and MM value>0.8
were defined as hub genes: CCDC69, CLMP, FAM110B,
FAMI129A, GUCY1B3, PALLD, PLEKHO1, and STY11.
Afterward, we defined genes in the purple module as
stemness-related hub genes (Fig. 2F). These results sug-
gested that the genes in the purple module was signifi-
cantly related to the stemness of OC cells.

Function and DEGs of IncRNA related genes

We next conducted the correlation analysis for the key
IncRNAs resulted from the WGCNA. Finally, 1269
genes were identified. Functional annotation analyses
of the selected genes were then performed. GO enrich-
ment showed that the IncRNA related genes were mainly
involved in “autophagy’, “process utilizing autophagic
mechanism’, “transcription regulator complex”, “focal
adhesion’, and “protein serine/threonine kinase activity”

(Fig. 3A). KEGG pathway enrichment analysis showed
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Fig. 1 Immune subtypes and clustering in OC patients. A Based on the results of ssGSEA, OC patients were divided into Immunity_H and
Immunity_L by hierarchical clustering algorithm. B Immune infiltration and tumor microenvironment landscape of TCGA-OC patients. C Verification
of immune subtypes by tSNE. D The comparison of Immune Score, Stromal Score and ESTIMATE Score in Immunity_H and Immunity_L groups. E
Comparison of the expression levels of HLA genes between two subtypes



Feng et al. Journal of Ovarian Research

Height
40

30

20

TOGA=13-1489-02A

Clustering of module eigengenes

C

(2023) 16:31

Sample dendrogram and trait heatmap

e |
@
o c
. & g s
T © o (o=
[=)) - w = =
2°]y . = 8 3 S 3
s 8 8 o 4
sS4z & =2 =
g =
=
N
o o _8
s 3
3 - s 3= %
S 3 T
e} > =
o ow
= =
E Module-trait relationships
MEpurple .
MEtan 25 !
(7e-07)
MEgreen _(0(5_%1)1
-0.1
MEDblack (0'001) L 0.5
MEblue (1033
MEturquoise (2_9;%%)
MEbrown (8_85‘31:‘31) Lo
-0.26
MEred (29—07)
MEcyan (4ei10§1)
MEsalmon . _(%%4 - -0.5
MEpink %R
ME 0.16
greenyellow (0.002)
MEmagenta . _%_0717 -1
X
x@
o

MEpink

MEgreenyellow

Scale Free Topology Model Fit,signed RA2

1.00
)

0.90
1

Height

0.80
1

MEmagenta
0.70
1

Dynamic Tree Cut

Merged dynamic

F

Scale independence

2 123
- 89104 1718
1920

o 4567 1516

e |2

@ |

(=}

~

=}

©

=}

0

o |4
T T T T
5 10 15 20

Soft Threshold (power)

Mean Connectivity
0 200 400 600 800

Page 6 of 17

Mean connectivity

2

3456789101112131415161718152

5 10 15 20
Soft Threshold (power)

Cluster Dendrogram

|
I

Module membership vs. gene significance

cor=0.75, p=1e-26

0.5

0.3 0.4
1

Gene significance for cluster
0.2
1

0.0
1

o
o °o
N o
o o
o° ®
° o
00 88 o °
° ° & of ©
o o & 8 o P
08 ° o ° OO o® o
o ©. 0 ° o, © dg’osooo
%o9” o %0 A
oo ° °<°9%0 8@
o o% °°°o
§° .2 0% °
0 08 %%
o
000% ©
o
o
T T T T T
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Module Membership in purple module

Fig. 2 Detection and validation of immunity-related module by WGCNA. A The cluster was based on the transcriptome data from TCGA. The color
intensity represents the immunity cluster. B Analysis of the scale-free fit index for various soft-thresholding powers and the mean connectivity for
various soft-thresholding powers. C The heatmap identified groups of correlated eigengenes termed meta-modules. D TOM cluster dendrogram
of WGCNA: Branches with different colors corresponding to different modules. Dynamic Tree Cut represents the original module, while Merged
Dynamic represents the final module. E Heatmap of the correlation between gene modules and the immunity cluster of ovarian cancer. The purple

module was the most significant module with immunity. F Scatter plot of module eigengenes in the purple module



Feng et al. Journal of Ovarian Research (2023) 16:31

autophagy :

A process utilizing autophagic mechanism

positive regulation of catabolic process [ ]
Ras protein signal transduction
positive regulation of cellular catabolic process
myeloid cell differentiation
response to steroid hormone o
rhythmic process [ ]
intracellular receptor signaling pathway [ ]
cellular response to steroid hormone stimulus [ ]

transcription regulator complex [ )
endosome membrane [ ]
nuclear chromatin )

focal adhesion [ ]
transfer%se com| Ieix, transfernng ®
Ehosp 10rus-containing group!
RNA polymerase |l transcription regulator complex

protein kinase complex [ ]
serine/threonine protein kinase complex L]
transcription repressor complex [ ]
PcG protein complex{ e

L]
=

protein serine/threonine kinase activity [

RNA polymerase Il-specific [ ]
DNA-binding transcription activator activity [ ]

DNA-binding transcription factor binding [ ]
ubiquitin-like protein ligase binding [ ]
ubiquitin protein ligase binding o

DNA-binding transcription repressor activity [ ]
DNA-binding repressor activity polymerase Il-specific [ ]

phosphatase binding [ )

SMAD binding L]

w

0.01 0.02 0.03 0.04

GeneRatio

0.05 0.

w

06
30
| | 4
I I y ' IG
' 1 174 n
= | | . hifie ‘ 2
S20- . Sig 0
o I | - ! o
3 . . e Down i L .
g, 1 l: . -4
=] ® Not B
E I L, ’ Ay °
"0 e Up
[ — - -_— e
O J .
4 3 2 14 0 1 2 3 4
logFC

Page 7 of 17
MAPK signaling pathway [ ]
p.adjust MicroRNAs in cancer ‘

Count
1e-05  Human cytomegalovirus infection [ ] @
2e-05 40

Hepatitis B [ ] .
3e-05 ‘ 50
Kaposi sarcoma-associated Y
herpesvirus infection
p.adjust
Count
Cellular senescence [ ]
@ 20
. 40 Breast cancer ® 2e-08
@~ 4e-08
Yersinia infection )
6e-08
Neurotrophin signaling pathway [ ]
EGFR tyrosine kinase inhibitor resistance { ®
0.04 0.06 0.08 0.10
GeneRatio
Type
Type
High Immunity

Low Immunity

Fig. 3 Enrichment analysis and differentially expressed genes of immune-related IncRNAs. A GO enrichment analysis and B KEGG pathway
enrichment analysis was performed. C Volcano plot of DEGs. D Heatmap of the DEGs

that the target genes were mainly involved in “MAPK
signaling pathway’, “MicroRNAs in cancer’, and “Human
cytomegalovirus infection” (Fig. 3B). Meanwhile, we
compared the DEGs between normal and cancer tissues
of the related genes. A total of 72 DEGs, were identified
including 31 down-regulated genes and 41 up-regulated
genes (Fig. 3C). The heatmap of DEGs were shown in
Fig. 3D. These outcomes indicated that the key genes
were functional in the progression of OC cells.

Consensus cluster analysis for selected key gene
expression profiles

Then, we performed the consensus clustering analysis
to investigate the relationship between these prognostic
genes and OC subtypes. According to the CDF value, we
classified the 379 OC patients into three clusters (k=3,
Fig. 4A-D). Cluster 1 (n=226), cluster 2 (#=2380), and
cluster 3 (n=73) were generated from a total of 379

patients. We used principal component analysis (PCA)
to display differences in gene expression levels among the
three subgroups (Fig. 4E). We also found that the patients
from cluster 2 tended to survive longer than the patients
from cluster 1 and cluster 3 (Fig. 4F), implying a signifi-
cant prognostic value of these DEGs.

Establishment and validation of the risk signature based
on IncRNA expression

We then constructed a risk model by the IncRNA
resulting from the purple module. First, we selected
these genes to conduct an additional LASSO regres-
sion analysis on 136 IncRNAs (Fig. 5A-B). Table 1
listed the genes and coefficients used to calculate
each subject’s risk score. The formula was as fol-
lows: Risk score =(AL391832.3%0.547455232)-
(AC078788.1*0.219104082)- (AC104971.3*0.240874313)
—(LINC00892%0.060063563) + (LINC02207%0.11
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5620759)- (LINC02416*0.160019691) —(PSMBS8.
AS1*0.015774278). The risk scores of OC patients in
TCGA were evaluated, and all patients were divided
into high-risk group and low-risk group according to
the median risk score (Fig. 5C). There was no doubt that
the mortality rate in the high-risk group was consider-
ably higher than that in the low-risk group (Fig. 5D).
Differential-expression levels of the 7 IncRNA and clin-
icopathological features in the high- and low-risk groups
are shown in heatmaps (Fig. 5E). The results showed
that living status, tumor residual disease, tumor sta-
tus, recurrence, grade, stage, and neoplasm subdivision
were differentially distributed in the two risk groups. The
correlation analyses were also performed to check the
expression correlation between the hub genes. (Fig. 5F).
To evaluate the role of the 7-IncRNA signature in OC, we
drew K-M curves for the high- and low-risk groups of the
TCGA-OC cohort (Fig. 5G). These two subgroups sig-
nificantly differed in OS (P<0.01). Thereafter, we used a
time-dependent ROC curve to predict the efficacy of the
risk signature. The area under the ROC curve (AUC) of
the prediction model was 0.72 of the OS (Fig. 5H). The
contents of seven IncRNAs in different immunity groups

were also compared. As shown in supplementary Fig.
S1, the expressions of seven IncRNAs were all elevated
in immunity_H group. We also validated the function of
PSMB8-AS1 in SKOV3 cell line in vitro and in vivo. As
shown in supplementary Fig. S2, the metastatic capabil-
ity significantly decreased after knocking down PSMB8-
AS1. These results suggested that the 7 IncRNAs play
essential roles in the progression of ovarian cancer.

Functional analysis of the risk score model

We further investigated the correlation between the risk
score and ESTIMATE related score including immune
score, stromal score, and estimate score. We found a low
positive relationship between Immune Score, Stromal
Score and risk score with ¥=0.13 and 0.28, respectively
(both p<0.01, Fig. 6A-B), which pointed out that stro-
mal and immune cell was higher in the high risk group.
However, the relationship between Tumor Purity and risk
score was negatively correlated (Fig. 6C). These results
indicated that patients with an unfavorable prognosis
in the high risk group associated with the variation in
tumor immune microenvironment of OC. To clarify the
important pathway of signature enrichment related to the
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risk signature, we conducted GSEA. Finally, 55 enrich- FDR<0.25, P-value<0.05. The top five signaling path-
ment pathways with significant variations between low  ways in the high-risk group were calcium signaling path-
and high-risk groups were identified at the criteria of way, cell cycle, fatty acid metabolism, GnRH signaling
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Table 1 Seven immune cluster associated genes and
corresponding coefficient value
Immune cluster associated gene Coefficient
AC078788.1 -0.2191041
AC104971.3 -0.2408743
AL391832.3 054745523
LINC00892 -0.0600636
LINC02207 0.11562076
LINC02416 -0.1600197
PSMB8.AS1 -0.0157743
Risk score Low:<0.97
High: > 0.97

pathway, and mismatch repair. On the other hand, the
top five signaling pathways in the low-risk group were
P53 signaling pathway, pyrimidine metabolism, regula-
tion pf actin cytoskeleton, TGF-f signaling pathway, and
tight junction (Fig. 6D). Furthermore, we stratified the

A._/\
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patients into four subgroups according to the immune
score and risk score. The result indicated that patients
with high immune score and low risk score had the
most favorable prognosis. However, patients with high
immune score and high risk score had the worst prog-
nosis (Fig. 6E). These results illustrated the relationship
between ESTIMATE score and risk score was significant,
and the potential function of the risk signature was also
meaningful.

Construction and validation of the prognostic-nomogram
model

Next, we performed univariate and multivariate Cox
regression analyses in the TCGA-OC patients to assess
the independent prognostic value of the IncRNA related
risk signature. We observed that in univariate analysis,
age, stage, tumor status, tumor residual, and risk score
were significantly correlated with prognosis (Fig. 7A).
Furthermore, multivariate analysis indicated that age,
tumor status, tumor residual, and risk score were inde-
pendent prognostic factors in the TCGA-OC patients
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(Fig. 7B; both P<0.05). A nomogram model based on
four independent risk factors was established to evalu-
ate the prognostic significance of the risk signature in
OC patients (Fig. 7C). The corresponding score of each

A

pvalue Hazard ratio
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variable is shown in Table 2. The calibration curves
revealed a favorable consistency between expected and
observed survival rates (Fig. 7D). Then patients with OC
were divided into three subgroups evenly according to the

pvalue Hazard ratio

age 0.036 1.396(1.022-1.907) —m—
L age 0.026 1.488(1.105-1.832) -
neoplasm_subdivision 0.825 1.038(0.746-1.444) —u—
stage <0.0011.652(1.249-2.185) - stage 0.554 1.108(0.788-1.559) —m—
lymphatic_invasion 0.399 1.303(0.704-2.411) —m—
tumor status  <0.0012.865(1.633-5.025 —a—
Grade 0.056 1.365(0.991-1.880) —m— ( )
tumor status <0.0013.469(2.132-5.644) —a— tumor_residual 0.006 1.614(1.193-1.973) -
tumor_residual <0.0011.302(1.129-1.501) = .
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Table 2 Corresponding risk score for each variable and total

score
Variables Category Score
Age <60 0
>60 33
Cancer status Tumor free 0
With tumor 100
Tumor residual No 0
1-10 mm 525
11-20 mm 70
>20mm 90
Risk signature Low 0
High 575
Total score Low risk 0-95
Moderate risk 100-215
High risk >225

A

OS curve of risk model in GSE17260

PFS curve of risk model in GSE17260
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total points from the nomogram namely low-, moderate-,
and high-score group. The overall survival curve of the
three groups was shown in Fig. 7E. The results showed
that patients with high scores had the worst prognosis.
What’s more, the ROC showed that nomogram could
accurately predict the survival outcome of patients, and
the AUC values of 1, 3 and 5 years were 0.780, 0.823 and
0.837 respectively (Fig. 7F). Taken together, the results
described above suggested that the nomogram model
had good reliability in predicting OS in OC patients.

Validation of the IncRNA-related risk signature in GEO
database

To assess the predictive value of the risk model, we used
the risk score algorithm in the GSE datasets. The results
in the validation cohort revealed that OC patients in the
high-risk group had worse OS and PES rates in GSE17260
(Fig. 8A-B), and OS in GSE14764 (Fig. 8C) than those in
the low-risk group. The AUCs for survival were 0.774,
0.759, and 0.786, respectively (Fig. 8D-F). These findings

OS curve of risk model in GSE14764
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suggested that the 7-IncRNA risk model could accurately
predict the prognosis of patients with OC.

Chemotherapeutic drug sensitivity analysis and validation

To observe the differences in drug sensitivity of commonly
used chemotherapeutic agents between the different risk
groups, drug selection was used. “pRRophic” package is a
method used to predict sensitivity of some kinds of chemo-
therapy drugs. By using the “pRRophetic” package for drug
sensitivity analysis, we observed that patients in the high-
risk group were more sensitive to rapamycin (Fig. 9A).
SKOV3 is derived from ascites isolated cells from patients
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with ovarian cancer. It has resistance to some chemo-
therapy drugs including cisplatin and adriamycin. A2780
is similar with SKOV3 cell line. Therefore, we further vali-
dated the function of rapamycin by in vivo experiments
with SKOV3 and A2780 cell lines. Transwell and wound
healing experiments indicated that rapamycin inhibited
invasion and metastasis in OC cell lines (Fig. 9B-C).

Discussion

Ovarian cancer (OC) has high mortality rates because
the early symptoms are uneasily detectable, and in most
cases, cancer has already advanced to late stages when

C Transwell of SKOV3
A Risk Edlow B high B —_
1.0 0.00012 MTT of SKOV3
o 2.0 _a Control
B 0.5 £ —o- Rapamycin 5
= S 151
% 0.0 i
& p 1.0
® 05 e w0 .
9 Q0.5+ 8 &
E-10 © g
5 . 0.0 E a0
© T T T T =
T _15 . 0 24 48 72 3 5
low high Time (h)
0
NC Rapamycin
D Gap closure of SKOV3
NC Rapamycin E

150

mm NC

MTT of A2780

[=7)
<
-Z,D 3 Rapamycin 209 — Control )
Dayl 2 = -~ Rapamycin .
o S 100 NA & 151
5 £
s 5 1.0 1
& E]
g 507 g
5 0.5 4
3 8
Day2 8 o
0_ . T T T T
Dayl Day2 0 24 ) 48 72
Time (day) Time (h)
Transwell of A2780
F Rapamycin G Gap closure of A2780
NC Rapamycin
1501 mm NC

Cell number
*
*
*

40 Day2

NC Rapamycin

= Rapamycin

Percentage of unclosed gap

Dayl
Time (day)

Day2
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diagnosed. The high-grade serous subtype contributes
to the majority of OC deaths, mainly as a result of the
advanced stage of patients upon initial diagnosis and the
high likelihood of relapse after chemotherapy. Therefore,
there is an urgent need to develop reliable tumor markers
and explore accurate prognostic strategies for the treat-
ment of OC [19, 20]. Accumulating evidence suggests
that IncRNAs play important roles in the occurrence and
development of tumors. LncRNAs participate in a range
of biological events and are known to regulate tumo-
rigenic processes. For example, inhibition of HOXD-AS1
reduced OC cell migration, invasion, and epithelial-
mesenchymal transition (EMT) in OC cells in vitro by
preventing HOXD-AS1 directly binding to miR-186-5p,
and resulting in down-regulating of PIK3R3 [21]. Overex-
pression of IncRNA CTBP1-DT could competitively bind
to miR-188-5p to protect MAP3K3 from degradation,
which could promote malignant biological behaviors of
HGSOC (high-grade serous ovarian cancer) cells [22]. To
accurately predict the clinical outcomes or chemotherapy
resistance of OC patients and improve their long-term
survival, the development of novel molecular biomarkers
for early OC detection is a high priority [23].

In order to verify the importance of immune-related
IncRNAs in ovarian cancer progress, IncRNA- related
prognostic and diagnostic model were developed. In this
study, we used ssGSEA to identify immune-related sub-
types and estimate the enrichment degree of 29 gene sets
in each sample of TCGA-OC. WGCNA was conducted
to reveal the key IncRNAs that played important roles
in this immune cluster. Then, a prognostic model inte-
grating IncRNAs were constructed through the LASSO
regression analysis methods. The expressional level of the
seven IncRNAs, which were used to construct the risk
model, were also compared between low and high immu-
nity clusters. This results indicated that population in
high immunity cluster is mostly affected by IncRNA reg-
ulation. Furthermore, we successfully divided OC sam-
ples into two groups, high- and low-risk groups based on
median risk score. Low-risk group had a better prognosis
for OS and had a higher immune infiltration level than
high-risk group. We then used OC cell line to verify the
predictive value of the risk score and found that it can
predict the prognosis and chemotherapy sensitivity of
rapamycin drugs. Finally, we performed a cell migration
and invasion assay and found that the ability to metasta-
size cells was significantly decreased after dealing with
rapamycin. This explained that the risk score predicting
prognosis may be due to invasion and metastasis of pre-
dicted drug. The prediction efficiency of our model can
be verified through gene expression matrixes of other
datasets in different platform, which confirms the reli-
ability and feasibility of our research.
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GO and KEGG analyses indicated that these IncR-
NAs are involved in autophagy, focal adhesion, Ras
protein signal transduction, and positive catabolic pro-
cess. Autophagy-related IncRNAs has been reported to
be potential as an independent prognostic indicator in
endometrial cancer and ovarian cancer [24, 25]. GASS8-
AS1 inhibited OC progression by activating autophagy
via binding with Beclinl, which could be reversed by
rapamycin. Autophagy-related IncRNA might be a
potential therapeutic target for OC clinical treatment
[26]. Focal adhesion is an essential function and play an
important part in the progression of cancer. For exam-
ple, LRRC15 expression leads to inhibition of anoikis-
induced cell death and promotes adhesion and invasion
through matrices that mimic omentum [27]. Oncogenic
RAS mutations drive cancers at many sites. Disruption
of K-RAS cluster formation requires the N terminus of
DIRAS3 and interaction of both DIRAS3 and K-RAS
with the plasma membrane. Interaction of DIRAS3 with
both K-RAS and H-RAS suggests a strategy for inhibit-
ing oncogenic RAS function [28]. Although metabolism
and some subclasses of nutrition may be associated to
EOC risk, lipid metabolism of LPA (lysophosphatidic
acid) and AA (arachidonic acid) emerges as an impor-
tant signaling network in epithelial ovarian carcinomas
(EOC) [29]. As an mTOR inhibitor, rapamycin is closely
related with IncRNAs. Increased expression of IncRNA
CASC9 promoted tumor progression by suppressing
autophagy-mediated cell apoptosis via the AKT/mTOR
pathway [30]. LINCO01554 could promote the ubiqui-
tin-mediated degradation of PKM2 and inhibited Akt/
mTOR signaling pathway to abolish aerobic glycolysis
in tumor cells [31].

Gene markers are widely used in modern clinical diag-
nosis. Collectively, our results suggest that the seven
IncRNAs may serve as biomarkers to predict the survival
and act as key molecules to reveal potential mechanism
for patients with OC. LINC00892 involved in molecular
subtype and risk model may be useful in improving the
prognostic prediction of bladder cancer patients with
different clinical situations and may help to find a use-
ful target for tumor therapy [32]. It was also associated
with immune cell infiltration and immune checkpoint
inhibitors immunotherapy-related biomarkers such as
mismatch repair (MMR) genes, tumor mutation burden
(TMB) and immune checkpoint genes [33]. However,
the specific function of LINC00892 in OC is still unclear.
We proved its function and found that the expression of
LINCO00892 is high in immunity H cluster. The further
functional pathway needs to be explored. It was reported
that PSMB8.AS1 is enriched in immune response pro-
cesses, which increased CD8 T-cell tumor infiltra-
tion and trans-regulation of genes in immune-related
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pathways, suggesting that an epigenetically mediated
immune response is a predictor of recurrence and, pos-
sibly, treatment response for high-grade serous (HGS)
EOC [34]. LINC02207 was also identified as a predic-
tive marker with significant prognostic value in ovar-
ian carcinoma [35]. Another study found that IncRNA
HOXA11.AS knockdown increased the expression of
autophagy-related proteins and improved cisplatin sen-
sitivity, decreased ovarian cancer cell proliferation, and
promoted cell apoptosis [36]. As an epithelial-mesenchy-
mal transition (EMT) related IncRNA [37], researchers
found that PMSB8.AS1 promoted pancreatic cancer (PC)
progression via STAT1 by sponging miR-382-3p involv-
ing regulation PD-L1 [38]. Knockdown of PMSB8.AS1
could also suppress EMT of PC cells. The downregula-
tion of PSMB8.AS1 repressed cell viability and EMT of
colorectal cancer while promoting its apoptosis [39]. All
these studies illustrated that IncRNAs functioned as key
molecules in the pathogenesis and progression of ovarian
cancer.

There were some other studies concentrating on dif-
ferent features of biological process and the comprehen-
sive analyses of functional related genes for OC [40, 41],
especially for IncRNAs. For example, one study identified
and validated risk model based on five immune-related
IncRNAs is an independent prognostic factor for OC
patients. The two risk groups were confirmed to be sen-
sitive to several chemotherapeutic agents and patients in
the low-risk group were more sensitive to immunother-
apy [42]. Another study identified five prognostic genes
associated with immune infiltration of OC. Some signifi-
cant variations of copy number on gene loci were found
between two risk groups and it showed that patients with
fine chemo-sensitivity has lower risk score than patient
with poor chemo-sensitivity [43]. A 5-IncRNA signature
of prognostic value was established for survival predic-
tion, and also constructed ceRNA networks for explo-
ration of potentially more selective drugs for OC [44].
All these studies revealed that IncRNAs are potential
biomarkers for the prediction and prognosis of patients
with OC. Furthermore, a nomogram integrating the risk
model and clinicopathological features are established.
The nomogram model is considered to be an evidence-
based, accurate method for the assessment of treatment
and prognosis, and has been widely used in studies on
a variety of OC study [45, 46]. A nomogram predic-
tion model was successfully constructed on the base of
independent risk factors determined through survival
analyses. By incorporating independent risk factors into
nomogram modeling to predict the survival rate, an AUC
of 0.837 was achieved, indicating the excellent predictive
ability of this method. The model can predict the survival
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rate of individual patients and is helpful for clinical treat-
ment decision-making and design of clinical re- search
programs.

According to the currently searchable literature, this
is the first relatively comprehensive study to establish an
immune cluster-related IncRNA prognostic model for
patients with OC and develop prognostic-related line
graphs. However, some limitations should also be noted
in our study. First, it is a retrospective study, for some of
the cohorts used, important clinical indicators includ-
ing surgery type, time to recurrence and metastasis is
not available due to the loss of patients and even if there
are strict standards, information bias is likely to appear.
Another flaw of this study is that due to the limited num-
ber of OC samples that can annotate IncRNA expres-
sion, more patients with homologous information were
needed to incorporate into study and prove the credibil-
ity of our study. Last but not least, the sensitivity of rapa-
mycin should be verified in human samples to prove its
antitumor effect.

Conclusion

In conclusion, this study shows that a signature consist-
ing of 7 IncRNAs that has potential clinical value for the
early diagnosis and prognostic monitoring of OC was
identified for prognosis prediction in patients with OC,
where a higher risk score indicates poorer prognosis. Fur-
ther research of underlying mechanisms based on these
IncRNAs may facilitate and provide some landscape for
individualized treatment of OC.
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