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Abstract 

Background  Cell-free DNA (cfDNA) is emerging as a potential biomarker for the detection of ovarian cancer (OC). 
Recently, we reported a method based upon cfDNA whole-genome sequencing data including the nucleosome 
distribution (nucleosome footprinting NF), terminal signature sequence (motif ), DNA fragmentation (fragment), and 
copy number variation (CNV).In the present study, we explored whether multiomics early screening technology in 
cfDNA can be applied for early screening of ovarian cancer.

Methods  Fifty-nine patients with OC and 100 healthy controls were included in this prospective study. Cell-free 
DNA was extracted from plasma and analyzed by low-pass whole-genome sequencing. Genomic features were 
obtained for all samples of the cohort, including copy number variation (CNV), 5’-end motifs, fragmentation profiles, 
and nucleosome footprinting (NF). An integrated scoring system termed the OC score was developed based on the 
performance of these four features.

Results  All four features showed diagnostic potential for OC. Based on the unique genome features of cfDNA, the OC 
score has high accuracy in distinguishing OC patients from healthy controls (AUC 97.7%; sensitivity 94.7%; specificity 
98.0%) as a new comprehensive diagnostic method for OC. The OC score showed a gradual trend from healthy con-
trols to OC patients with different stages, especially for early OC monitoring of concern, which achieved a satisfactory 
sensitivity (85.7%) at a high specificity.

Conclusions  This is the first study evaluating the potential of cell-free DNA for the diagnosis of primary OC using 
multidimensional early screening technology. We present a promising method to increase the accuracy of prediction 
in patients with OC.

Background
Ovarian cancer (OC) is a common malignant tumor of 
female reproductive organs. The mortality rate of OC 
is higher than that of breast cancer, cervical cancer, and 
endometrial cancer, ranking first among gynecological 
malignancies. Approximately 300,000 new cases of OC 
and 180,000 deaths occur annually worldwide [1] and 
due to deep ossification in the pelvis of the ovary and a 
lack of typical clinical symptoms, approximately 75% of 
patients are diagnosed at advanced stages (stage III/IV). 
The 5-year survival rate of early-stage patients can reach 
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more than 70%, whereas that of advanced-stage patients 
is less than 30%. Therefore, the development of markers 
for early diagnosis and precise treatment of OC is critical 
to prolonging patient survival.

Current early screening methods for OC mainly 
include traditional detection and new liquid biopsy. 
However, traditional tumor screening methods have 
some technical limitations, such as,the diagnostic sensi-
tivity and specificity of CA125 for OC are low (the sen-
sitivity and specificity are 79% and 78% [2]). Moreover, 
pathological diagnosis requires needle biopsy, which is 
generally only used to diagnose suspected cases.

Cell-free DNA (cfDNA) refers to nucleic acids detected 
in body fluids and are thought to arise from two sources: 
passive release through cell death, and active release 
by cell secretion. Previous studies have shown that it 
is difficult to improve the sensitivity and specificity of 
early screening using only a single molecular feature of 
cfDNA. Therefore, different analytes are used for early 
screening of cancer, with liquid biopsy being a popular 
strategy. Recently, we reported a method based upon 
cfDNA whole-genome sequencing data including the 
nucleosome distribution (nucleosome footprinting NF), 
terminal signature sequence (motif ), DNA fragmenta-
tion (fragment), and copy number variation (CNV) [3]. 
Here, we propose to implement the cell-free DNA test-
ing method in the patients with ovarian cancer tumors. 
In addition, we have also assessed an independent series 
of non-cancer controls to evaluate the specificity of the 
approach.

Material and methods
Patient cohort and epidemiological data acquisition
We collected peripheral blood samples before surgery 
from a total of 59 patients with OC from Peking Union 
Medical College Hospital, China, from June 2021 to 
March 2022. The diagnosis of all patients selected for 
the experimental group was confirmed cytopathologi-
cally and histologically, and the patients had not received 
surgery, chemoradiotherapy or immunotherapy. In addi-
tion, 100 peripheral blood samples were collected from 
healthy individuals who visited the clinic for routine 
physical examination. The study was approved by the 
Ethical Committee of the Peking Union Medical College 
Hospital, and written informed consent was obtained 
from all participants according to institutional guidelines.

Sample processing and cfDNA extraction
All peripheral blood samples were stored in cell-free 
tubes (Streck, USA) at 4 °C for no more than 72 h before 
plasma separation by centrifugation at 800 × g for 10 min 
at 4  °C. The plasma was centrifuged a second time at 
18,000 × g at room temperature to remove any remaining 

cellular debris and stored at − 80  °C until DNA extrac-
tion. Plasma cell-free DNA (cfDNA) was isolated using 
MagMAX Cell-Free DNA Isolation Kit (Thermo, USA) 
according to the manufacturer’s protocol. The quality 
of the purified DNA was quantified using a Qubit® 4.0 
Fluorometer (Life Technologies, USA), and the DNA 
fragment size composition was assayed with a Fragment 
Analyzer (Agilent, USA).

Low‑pass whole‑genome sequencing and data processing
Low‑pass WGS library construction and quality inspection
Five nanograms of DNA from each sample was prepared 
for WGS library construction. The DNA samples were 
first randomly fragmented and then subjected to end 
repair/dA tailing (5X ER/A-Tailing Enzyme Mix). dTTP-
tailed adapters were ligated to both ends of the repaired/
dA-tailed DNA fragments using WGS Ligase and then 
amplified by PCR. The PCR products from each library 
were subsequently purified using an Agencourt AMPure 
XP PCR Purification Kit (Beckman Coulter, Brea, CA, 
USA); each DNA library was quantified using KAPA 
Library Quantification Kit (Kapa Biosystems, USA), and 
sizes were confirmed using a Bioanalyzer (Agilent, USA). 
The sequencing libraries were pooled at equal amounts 
and analyzed using the Illumina NovaSeq 6000 platform.

Processing of low‑pass WGS data
FASTQ files were processed with Fastp software (https://​
github.​com/​OpenG​ene/​fastp, the detailed parameters 
are as follows: fastp -i R1.fastq.gz -I R2.fastq.gz –cut_
by_quality3 -l 25 –correction -w 8 -o R1.clean.fq.gz -O 
R2.clean.fq.gz -j jsonfile -h htmlfile) to remove adap-
tors and sequences with low average sequencing quality 
together with sequences below 50  bp to acquire clean 
data. The filtered data were aligned to the Hg19 refer-
ence genome using bwa-mem (https://​github.​com/​lh3/​
bwa, the detailed parameters are as follows: bwa mem-t 
4 -M -R ’@RG\tID:XJE22A00225_H1\tPL:illumina\
tSM:sampleID’ hg19.genome.fa R1.clean.fq.gz R2.clean.
fq.gz | samtools sort—-m 4G -o sort.bam) to obtain cor-
responding specific positional information of the genome 
for each DNA fragment. Data redundancy introduced by 
PCR was removed using sambamba (https://​github.​com/​
biod/​samba​mba/​,the detailed parameters are as follows: 
sambamba markdup -t 30 sort.bam rmdup.bam –over-
flow-list-size = 8,000,000 –sort-buffer-size = 10,240) soft-
ware, and DNA fragments with low alignment quality, 
unalignment, or not being perfectly paired two-end reads 
were removed by samtools (http://​samto​ols.​sourc​eforge.​
net/​,the detailed parameters are as follows: samtools view 
-bh -F 1804 -q 20 rmdup.bam). The filtered DNA frag-
ments were sorted by alignment position for easy subse-
quent analysis and processing. Reads with mapping rates 
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above 90%, duplicate rates below 25% and coverage above 
50% passed the quality control. All sample data were 
qualified.

WGS‑based biomarker identification and integrated model 
construction
The characteristic signals unique to cancer patients can 
be mined by cfDNA WGS data, such as nucleosome foot-
printing (NF), 5’-end motifs, fragmentation, and CNV. To 
select more effective biomarkers for distinguishing OC 
samples from healthy controls, samples were randomly 
divided into two subsets: the training set consisted of 50 
HCs and 40 OC cases, and the test set consisted of the 
remaining samples (including 50 HCs and 19 OC cases). 
We constructed a weighted diagnostic model based on 
the performance of these four features. and the perfor-
mance of the final model was evaluated using test set 
data. The detailed selection process was performed as 
described below.

5’‑end motifs  The starting termination position of each 
DNA fragment was determined by alignment to the ref-
erence genome. Then, 256 different types of 4-mer 5’-end 
motifs were identified, and their percentages were calcu-
lated (using pysam (https://​pysam.​readt​hedocs.​io/​en/​lat-
est/)) without considering chromosome Y or unidentifi-
able bases. The following motif types were filtered out: 1) 
P ≥ 0.05 in Wilcoxon rank-sum test between the OC and 
HC groups; and 2) weight of 0 via LASSO. Eventually, 62 
motif types remained for further analysis.

Nucleosome footprinting (NF)  The main tran-
scripts of coding genes were used for analysis. The pro-
moter region and background region of transcripts were 
divided, and the read number of different regions was 
counted with featureCounts [4]. The following genes 
were filtered out: 1) more than 10% of the total samples 
showing an NF score of 0; 2) P ≥ 0.001 in the Wilcoxon 
rank-sum test between the ESCC and HC groups; and 3) 
weight of 0 via LASSO. Eventually, 209 genes remained 
for further analysis.

Fragments  The whole genome except for the Y chro-
mosome was divided into 1-M-sized bins, resulting in 
3055 areas. Pysam (https://​pysam.​readt​hedocs.​io/​en/​
latest/) was used to calculate the length of the insertion 
fragment and the ratio of short/long fragments in differ-
ent regions. LASSO was then used to filter out areas with 
a weight of 0; 66 areas were retained.

Copy number variation (CNV)  The human genome 
was divided into 2-kb regions, and the average sequenc-
ing depth of each was counted and the GC content 

corrected. A baseline threshold was established for each 
region with the mean and variance of the copy num-
ber from the data for the healthy population. Regions 
with significant copy number differences were identified 
compared with the baseline threshold. By connecting 
them with adjacent windows, CNV regions with a length 
greater than 2  Mb were obtained. The CNV score was 
then calculated using an equation reported previously 
[5].

OC score model construction
Based on the markers screened by LASSO in the three 
genomic features, the support vector machine (SVM) 
method was used for model construction. The combina-
tion of parameters in the training set was optimized by 
means of tenfold cross-validation, and the cutoff value 
was set at the point with the highest diagnostic accuracy. 
To obtain the best surveillance model, a logistic regres-
sion model was generated based on the prediction score 
of the single-genomic feature model as input features. 
The logical score is calculated as follows:

Logistic Score = exp(Z)/(1 + exp(Z)), where 
Z = -2.48 + (2.84*NF) + (2.01*Fragment) + (0.56*Motif )

Receiver operating characteristic (ROC) curves [6] 
were generated to evaluate the performance of a predic-
tion algorithm using the pROC [7] library in the R pack-
age. Sensitivity and specificity were assessed at the score 
cutoff that maximizes the sum of sensitivity and specific-
ity using the ROCR library in R.

Finally, the CNV score and logic score were integrated 
to obtain the OC score.
OCscore = LogisticScore+CNV Score

Results
Sample composition and study design
A total of 59 primary OC patients were retrospectively 
enrolled in this study, including 10 at FIGO stage I, 10 at 
stage II, 31 at stage III, and 8 at stage IV. The histologic 
types of the OCs were high grade serous ovarian cancer 
(n = 38), endometrioid ovarian cancer(n = 12), clear cell 
ovarian cancer(n = 4), mucinous ovarian cancer (n = 2), 
brenner ovarian cancer(n = 1), undifferentiated ovarian 
cancer(n = 1), and mixed ovarian cancer (serous and sar-
coma, n = 1). The HC cohort was assembled based on the 
study criterion of no form of cancer. Detailed pathologi-
cal and clinical information was obtained from clinical 
records, as provided in Table 1 and supplementary Table 
S1. Based on the Wilcoxon test (P value = 0.53), the age 
distribution among the HC and OC groups was unbiased. 
Our primary aim was to develop a convenient and excel-
lent diagnostic model that reflects the genome-wide fea-
tures of plasma cfDNA using liquid biopsy techniques to 
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distinguish OC patients from HCs. To select suitable bio-
markers and build classification models, OC patients and 
HCs were randomly divided into two groups: approxi-
mately 2/3 of the OC patients were used as the training 
set (including 50 HCs and 40 OC cases) and 1/3 were 
used as the test set (including 50 HCs and 19 OC cases) 
(Fig. 1).

Genomic alteration features of ovarian cancer
We analyzed each plasma DNA fragment using massively 
parallel sequencing. Four genomic feature-based frag-
ments were profiled to determine their relevance in dis-
tinguishing OC patients from HCs (Fig. 1).

Fragment size  We focused on the fragmentation size 
of cfDNA, as previous studies have shown that the length 
of cfDNA from cancer cells may be more variable than 
that from noncancer cells [8]. The size distributions of 
cfDNA showed that fragment sizes in tumor patients 
were shorter than those of cfDNA in healthy people 
(Fig. 2A), and the mean difference in average insert size 
between the two groups was 3.5  bp (95% confidence 
interval (CI), 1.3–5.7 bp) (Fig. 2B). To assess differences 
in fragment size and coverage in a position-dependent 
manner throughout the genome, the fragments were 
mapped to the genome, and the whole genome except 
for the Y chromosome was divided into 1-M-sized 
bins, resulting in 3055 areas. We calculated the length 
and coverage of the insertion fragment and the ratio of 
short (90–150  bp)/long (151–220  bp) fragments in dif-
ferent regions. The genome-wide fragmentation profiles 

of the training set (50 HCs, 40 OC cases) are shown in 
Supplementary Fig.  1A. For healthy people, the ratio of 
short fragments to long fragments was relatively stable 
and concentrated. In contrast, in OC patients, ratios were 
more variable. An increase in the proportion indicates 
an increase in short cfDNA, which is consistent with the 
characteristics of ctDNA fragmentation in tumor tis-
sues [9]. Differential analysis of the genomic windows of 
the OC and HC groups revealed a total of 66 windows 
exhibiting extremely significant proportional differences 
in short-long fragments, highlighting position-dependent 
alterations of cfDNA fragments, and the features of these 
66 windows can be used to distinguish OC patients from 
healthy populations.

5’‑end motifs  DNA fragments are nonrandomly cut 
into cfDNA by the nuclease, and each endonuclease has 
a preferred base type [10, 11]. It has been demonstrated 
that the first 4-nucleotide (i.e., 4-mer) sequence of each 5’ 
fragment end of plasma DNA, as the specifically selected 
break end, carries information regarding the tissue-origin 
profile of the cfDNA [12]. cfDNA end motifs (4-mer) 
were identified after alignment to the reference genome 
(see Methods). By counting the frequency of each plasma 
DNA end motif, we found a difference in the propor-
tion of base combination types at the ends of fragments 
from a genome-wide perspective. Hierarchical clustering 
analysis of the 256 motif frequencies revealed that OC 
samples tended to cluster together but that HC samples 
tended to form different clusters (Supplementary Fig. 1B). 
By P value filtering (Wilcoxon test, P value < 0.05) and 

Table 1  Summary of demographic and clinicopathological characteristics of all the participants in this study

Note: OC ovarian cancer, WHO World Health Organization

Characteristics Healthy controls(n = 100) OC patients (n = 59)

Demographic
  Age at surgery, years, n(%)  < 60 68(68.0) 36(61.0)

≧60 32(32.0) 23(39.0)

  Gender, n (%) Famale 100(100.0) 59(100.0)

Clinical
  FIGO stage, n (%) I - 10(16.9)

II - 10(16.9)

III - 31(52.6)

IV - 8(13.6)

  WHO Classification,n(%) Serous - 38(64.4)

Endometrioid - 12(20.3)

Clear cell - 4(6.8)

Mucinous - 2(3.4)

Brenner - 1(1.7)

Undifferentiated - 1(1.7)

Mixed - 1(1.7)
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LASSO dimension reduction,62 motifs significantly dif-
ferent between the OC and HC groups were selected. The 
motif features of top 10 in the training set are listed in 
the boxplot, and these motifs between the OC and HC 
groups exhibited significant differences. Among the top 
10 motifs, most showed a significant increase in patients 
with OC (e.g., ACAA, CCAC), though GGGA was signif-
icantly decreased in OC patients (Fig. 2C). PCA demon-
strated the ability of 62 motifs to act as a potential clas-
sification parameter (Fig. 2D).

Nucleosome footprinting (NF)  Nucleosomes protect 
the DNA structure from endogenous nuclease activity. 
In regions with low transcriptional activity, nucleosomes 
are closely arranged; however, the chromosome struc-
ture is usually loose in malignant tumors, and there are 
few nucleosomes in regions with active gene transcrip-
tion and expression [13]. Hence, we determined the 
coverage of nucleosome degraded (NDR, from − 150 BP 

to + 50 BP with respect to the TSS) and the background 
(from − 2000 BP to + 2000 BP with respect to the TSS) 
regions of all coding genes. The difference in coverage 
of the background region and NDR represents the dis-
persion of nucleosome distribution. After screening, 
we obtained 209 genes with different nucleosome dis-
tributions in patients with OC and in healthy controls. 
NF heatmap analysis indicated that genes with differen-
tial read coverage between promoter and background 
regions are able to distinguish OC patients from HCs 
(Fig.  2E). Moreover, KEGG enrichment results showed 
the differentially expressed genes to be enriched in neu-
roactive ligand − receptor interactions, pathways in can-
cer and estrogen signaling pathways (Fig. 2F).

We found CNV signals in 17/59 OC samples, and the 
CNVs are provided in Supplementary Table S2. Collec-
tively, all four genome features of cfDNA showed promis-
ing diagnostic potential for OC.

Fig. 1  Study design for detection of OC. A diagnostic model based on low-pass WGS was used to identify ctDNA from plasma cfDNA using 
machine learning methods. 159 participants were randomly split into a training cohort (N = 90) and test cohort (N = 69).OC,ovarian cancer; HC, 
healthy control; WGS, whole genome sequencing; NF, Nucleosome Footprint; Lasso, Least absolute shrinkage and selection operator; SVM, Support 
Vector Machine
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Fig. 2  Model construction of genomic features. A Fragment size distributions of OC and HC individuals . A reproducible peak in fragment length at 
167 bp (black dashed line) is consistent with association with chromatosomes. B Box plots showing average insert size of healthy individuals (n = 
50) is longer than that of patients with ovarian cancer (n=40). C Box plot analysis of Top ten representative motifs showing differential frequencies 
between OC and HC subjects. D Principal Component Analysis(PCA) of training set(including 50HC,40 OC). E Heat map classification using 209 
genes with different nucleosome distribution. F KEGG analysis of 209 genes



Page 7 of 10Zhou et al. Journal of Ovarian Research           (2023) 16:11 	

Performance evaluation of the OC score for individuals 
with OC
By integrating the above four-dimensional genomic fea-
tures, a multidimensional OC early warning model was 
constructed. This model was used to assess the genomic 
features of each subject in the validation cohort and pro-
vide an independent score (OC score). OC patients and 
HCs showed extremely significant differences in scores 
(Fig.  3A). The OC score also exhibited strongly sensi-
tive detection and diagnostic potential in different clini-
cal subgroups, particularly for histological subtypes and 
FIGO staging, but not in different age groups (Fig.  3D-
F); it showed a strong diagnostic value in distinguishing 
between the OC and HC groups. we grouped according 
to the current metastatic status and resectability of the 
tumors, and a one-way ANOVA was conducted to com-
pare OC score in the different groups (Supplementary 
Fig. 2A-B). OC score was significantly different between 
the metastatic and non-metastatic groups(mean ± SD: 
3.73 ± 1.71; 1.42 ± 0.99; respectively; one-way ANOVA, 
F = 4.96, P < 0.05).  OC score was significantly dif-
ferent between the resectable and non-resectable 
groups(mean ± SD: 1.57 ± 0.86; 3.86 ± 1.70; respectively; 
one-way ANOVA, F = 6.52, P < 0.05).  The sensitivity 
and specificity of the model were 94.74% and 98.00%, 
respectively, in the independent test set (19 OC cases 
and 50 HCs) (Fig.  3C). In the test set, the area under 
the curve (AUC) for NF, motif, and fragment was 0.958, 
0.957, and 0.812, respectively; that of the OC score was 
0.977 (Fig. 3B). Motif had the highest sensitivity (94.7%) 
and fragment the highest specificity (98%). Detection of 
cfDNA by CNV exhibited good performance with regard 
to PPV (100%) and specificity (100%), though the sensi-
tivity was poor (36.84%). These parameters showed both 
advantages and disadvantages. The accuracy of the three 
genomic features (NF, motif and fragment) was 89.86%; 
that for CNV was 82.61%. Thus, OC diagnostic models 
based on multiple genomic features can effectively dis-
tinguish OC patients from HCs (AUC = 0.977[0.937–
1.000]), and their diagnostic performance is significantly 
higher than that of any diagnostic model built using a 
single genomic feature.

Discussion
The development of gene sequencing technology has 
allowed for continued maturation of cfDNA detec-
tion technology, and its clinical application potential in 
tumor diagnosis and treatment is very wide. In addition 
to detecting somatic mutations in plasma to obtain can-
cer occurrence signals, abnormalities can also be found 
in terminal characteristic sequences (motif ), nucleosome 
distribution (NF), DNA fragmentation (fragment), and 
CNVs, among others.

This study is the first to use genome-wide multidimen-
sional variation indicators, including terminal character-
istic sequences (motif ), nucleosome distribution (NF), 
DNA fragmentation (fragment), and copy number abnor-
malities, to construct a multidimensional whole-genome 
model for OC. We developed a genetic screening model 
to distinguish patients with OC from HCs and demon-
strated the advantages of this multidimensional genomics 
diagnostic model over the traditional biomarker CA125.

Based on the unique genomic features of cfDNA, we 
developed a new comprehensive OC diagnosis method, 
the OC score, which has high accuracy in distinguishing 
OC patients from HCs (AUC 97.7%; sensitivity 94.7%; 
specificity 98.0%), with good application in clinical prac-
tice. Compared with imaging and pathology detection, 
serology has the characteristics of noninvasiveness, 
rapidity, ability to detect trace amounts and high patient 
compliance. However, traditional serological markers 
have certain limitations, such as the insufficient sensitiv-
ity and specificity of CA125 and elevated concentrations 
present in some benign diseases; furthermore, low levels 
of markers cannot rule out the possibility of OC. HE4 has 
high specificity, but its concentration also increases in 
other malignant tumors, with age and renal function also 
having certain effects. For these reasons, in an attempt to 
improve the inherent characteristics of these biomarkers, 
some studies have integrated CA125 with HE4 and devel-
oped the ROMA algorithm. Overall, the ROMA algo-
rithm is more sensitive but less specific than HE4 alone 
[14]. Detection of cfDNA can capture free tumor DNA 
fragments (ctDNA) in the blood and mine the unique 
characteristic signals of tumor patients.

As ctDNA is derived from the tumor genome and car-
ries relevant information about the tumor, it has a wide 
range of potential clinical applications, mainly involving 
early tumor screening, tumor dynamic monitoring, and 
recurrence risk. At present, there are two main prob-
lems hindering its development: the low abundance of 
ctDNA and the background cfDNA noise in the blood, 
which affect the sensitivity and reliability of the diagno-
sis. Whole-genome sequencing (WGS) overcomes these 
problems through advantages of high coverage, high 
throughput and high resolution. Several studies have elu-
cidated the molecular features of ctDNA. Nucleosomes 
are the basic structural units of chromatin formed by 
DNA and histones that protect DNA structures from 
damage due to endogenous nuclease activity. In an 
organism, DNA in each cell type is packed slightly differ-
ently and in different functional regions of the genome, 
and these differences leave indicator marks in the result-
ing cfDNA. Therefore, the distribution of nucleosomes 
has a certain tumor specificity [13, 15]. Different exo-
nucleases degrade genomic DNA to form cfDNA with 
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Fig. 3  Diagnostic value of OC score in ovarian cancer. A The OC scores of all participants in the test cohort. Upper: clinical characteristics of all 
sample. B ROC curves of OC score and solitary genomic features for OC patients versus HC individuals in the test cohort. C Confusion matrices 
showing OC score for diagnosis performance in the test cohort. D The sensitivity performance of OC score in different stage at specificity of 98.0%. 
E The sensitivity performance of OC score in different age group. F The sensitivity performance of OC score in different histologic type
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specific end motifs. In general, the diversity of DNA end 
sequences in the plasma of cancer patients is significantly 
increased, and it is highly preferred. Healthy cfDNA 
mainly derives from programmed or natural cell death; 
the proportion of ctDNA in cfDNA increases in disease, 
and its fragment size is shorter than that in healthy peo-
ple [8]. In addition, cancer patients often have chromo-
somal abnormalities such as CNVs, and CNV signals in 
tumor tissue can be stably detected at an average depth of 
1 × genome coverage [16, 17]. As a consequence, specific 
genomic signatures of cfDNA detected by WGS can pro-
vide precise information about tumor cell populations. 
Methylation detection of ctDNA in peripheral blood is a 
popular non-invasive early diagnosis method in the field 
of tumor detection in recent years, and it is also common 
in the field of ovarian cancer. Biomarkers based on tumor 
specific methylation have proved to be of great value in 
monitoring the prognosis of diseases and different patho-
logical determinants [18]. As mentioned above, many 
studies have reported abnormal methylation in ovarian 
cancer [19, 20], and also used methylation as a classifica-
tion feature to verify its role in diagnosis. However, com-
pared with the single dimension methylation sequencing 
technology, this study uses multi-dimensional variation 
indicators within the whole genome, with stable perfor-
mance, wider coverage and greater overall accuracy. At 
the same time, the ability of whole genome sequencing 
technology to expand application scenarios is relatively 
strong. This article does not make detailed research on 
each subspecies, such as the determination of benign and 
malignant diseases. In this article, we did not conduct 
detailed research on each subspecies, such as the judg-
ment of benign and malignant, etc. If study want to dis-
tinguish between subspecies and benign and malignant 
ovarian diseases in the future, there is no need to switch 
the experimental process. It is enough to replace the indi-
cator in the process, but methylation needs to redesign 
the probe to find the target. At the same time, the low-
pass whole-genome sequencing used in this study is rela-
tively cheap, and more suitable for large-scale expansion 
in the field of early screening of ovarian cancer.

Above all, ctDNA can be used as a potential biomarker 
for the diagnosis of OC. As previous studies have shown 
that it is difficult to improve the sensitivity and specific-
ity of early screening only by a single molecular feature 
in ctDNA, the combination of different analytes has 
been used for early cancer screening, and liquid biopsy 
is an inevitable trend. Based on the performance found 
in this study, the sensitivity and specificity of NF were 
similar (AUC 95.8%; sensitivity 89.5%; specificity 90.0%), 

whereas the sensitivity of motif was excellent but speci-
ficity slightly insufficient (AUC 95.7%; sensitivity 94.7%; 
specificity 88.0%); the fragment distribution trended in 
the opposite direction (AUC 81.2%; sensitivity 68.4%; 
specificity 98.0%%). Conversely, CNV showed excellent 
specificity but low sensitivity (sensitivity 36.8%; speci-
ficity 100.0%). The OC score, which integrates multiple 
features, had a sensitivity and specificity of 94.74% and 
98.00%, respectively, with obvious advantages over tra-
ditional serum markers and single-omics indicators. 
In assessing the diagnostic value of OC score in a sub-
group of ovarian cancer patients, OC score accurately 
distinguishes between CA125-negative ovarian cancer 
patients (Supplementary Fig. 2C) We maintained a 100% 
detection rate in ca125-positive patients, and we still 
had a 60% detection rate in ca125-negative patients. And 
because the sample size of this study was insufficient, 
this proportion might have been higher if in the real 
world.

Although early detection of OC reduces mortality by 
10–30%, unfortunately, only 15% of OCs are diagnosed 
at an early or localized stage [21]. Therefore, early 
screening of OC has always been a clinical concern. In 
this study, the detection rate of early OC reached 85.7% 
(I, II), which is promising for early screening of high-
risk groups. Regardless, the performance of the model 
needs to be validated in a larger cohort.

The present results demonstrate the great value of 
ctDNA-based fragmentomic analysis in OC diagnosis 
as a noninvasive tool with potential to improve early 
cancer screening modalities at an acceptable cost in 
routine clinical settings, with specificity and sensitivity. 
In the routine clinical environment, cancer screening 
can be carried out with high specificity and sensitiv-
ity at an acceptable cost to significantly reduce cancer-
related mortality. Nonetheless, further studies with 
larger cohorts are needed to determine which ctDNA 
signatures are most accurate when applied to large 
populations of patients and should include more early-
stage samples to develop models that are more suitable 
for early-stage patients.
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