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Abstract 

Background  Emerging evidence has highlighted the biological significance of pyroptosis in tumor tumorigenesis 
and progression. Nonetheless, the potential roles of pyroptosis in tumor immune microenvironment and target 
therapy of ovarian cancer (OC) remain unknown.

Methods  In this study, with a series of bioinformatic and machine learning approaches, we comprehensively evalu-
ated genetic alterations and transcriptome profiles of pyroptosis-associated genes (PYAGs) with TCGA-OV datasets. 
Consensus molecular clustering was performed to determine pyroptosis-associated clusters (PACs) and gene clusters 
in OC. Subsequently, component analysis algorithm (PCA) was employed to construct Pyrsig score and a highly accu-
rate nomogram was established to evaluate its efficacy. Meanwhile, we systematically performed association analysis 
for these groups with prognosis, clinical features, TME cell-infiltrating characteristics, drug response and immunother-
apeutic efficacy. Immunohistochemistry was conducted to verify molecular expression with clinical samples.

Results  The somatic mutations and copy number variation (CNV) of 51 PYRGs in OC samples were clarified. Two dis-
tinct PACs (PAC1/2) and three gene clusters (A/B/C) were identified based on 1332 OC samples, PAC1 and gene cluster 
A were significantly associated with favorable overall survival (OS), clinicopathological features and TME cell-infil-
trating characteristics. Subsequently, Pyrsig score was successfully established to demonstrate the prognostic value 
and immune characteristics of pyroptosis in OC, low Pyrsig score, characterized by activated immune cell infiltration, 
indicated prolonged OS, increased sensitivity of some chemotherapeutic drugs and enhanced efficacy of anti-PD-L1 
immunotherapy, Consequently, a nomogram was successfully established to improve the clinical applicability and 
stability of Pyrsig score. With clinical OC samples, GSDMD and GZMB proteins were validated highly expressed in OC 
and associated with immune infiltration and Pyrsig score, GZMB and CD8 proteins were regarded as independent 
prognostic factors of OC.
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Conclusion  This work revealed pyroptosis played a non-negligible role in prognosis value, clinicopathological char-
acteristics and tumor immune infiltration microenvironment in OC, which provided novel insights into identifying and 
characterizing landscape of tumor immune microenvironment, thereby guiding more effective prognostic evaluation 
and tailored immunotherapy strategies of OC.
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Introduction
Ovarian cancer (OC) remains the most aggressive and 
fatal tumors in gynecological malignancy due to chemo-
therapy resistance and metastasis [1]. Over the past dec-
ades, infiltrated immune cells, as one of the most crucial 
components of the tumor microenvironment (TME) 
contexture, have been found to exert nonnegligible func-
tions in tumorigenesis and metastasis of OC [2]. Immu-
notherapy represented by immune checkpoint inhibitors 
(ICIs) has been regarded as the prominent therapeutic 
strategies with its higher specificity, better outcome, and 
fewer side effects [3, 4]. However, only a small fraction of 
OC patients could respond to such immunotherapy [5]. 
Increasing studies have suggested that the TME plays a 
crucial role in immunotherapy responsibility [6]. There-
fore, evaluating the immune infiltration characteristics 
of TME in OC provide novel approaches to developing 
effective immunotherapeutic strategies.

Pyroptosis, a form of lytic and pro-inflammatory pro-
grammed cell death, is characterized by gasdermin 
(GSDM) family proteins or caspases activation to induce 
membrane permeabilization, cell swelling, and release 
of intracellular inflammatory cytokines, such as IL-18, 
IL-1β, HMGB1, and ATP, accompanied by an intense 
inflammatory responsiveness and activation of immune 
infiltration cells [7, 8]. The dysregulation of pyroptosis 
exerted great impacts on tumor progression and prog-
nostic prediction of various cancers, including OC [9]. 
Researchers showed that pyroptosis induced by α-NETA 
can inhibit progression of OC through increasing gasder-
min D (GSDMD)/caspase-4 expression [10]. NOD-like 
receptor protein 1 (NLRP1) mediated pyroptosis caused 
by silencing lncRNA HOTTIP could inhibit the growth 
of OC [11]. However, the functions and underlying 
mechanisms of PYAGs in immune microenvironment of 
OC remain elusive.

The tumor microenvironment plays a crucial role 
in the tumorigenesis and progression of tumor cells, 
which consists of cancer cells, stromal cells (fibroblasts, 
endothelial cells and mesenchymal stem cells), immune 
and inflammatory cells (lymphocytes, macrophages and 
myeloid cells), extracellular matrix as well as secreted 
factors and their receptors, such as immune check-
points (PD-1/L1 and CTLA4), chemokines, cytokines 

and growth factors [12]. The multifaceted interac-
tions between tumor cells and surrounding immune 
components in TME can affect tumor development 
and progression and induce immune escape and tol-
erance by secreting various molecules. Nowadays, 
considerable evidence has demonstrated complex 
crosstalk between PYAGs and tumor immune micro-
environment [13]. Researchers found that gasdermin 
C (GSDMC) was transcriptionally regulated by PD-L1 
in the nucleus under the condition of hypoxia, and fur-
ther eliminated by TAM-derived caspase-8, which in 
turn induced pyroptosis in breast cancer cells [14]. A 
lack of GSDMD hampered the ability of CD8+ T cells 
to destroy tumor cells [15]. Additionally, activation of 
gasdermin E (GSDME) could turn a “cold” tumor that 
was lack of immune response into a “hot” tumor that 
was controlled by the immune system [16]. However, 
the afore-mentioned researches were all restricted to 
one or two PYAGs and cell types due to technical limi-
tations, while pyroptosis and immune response are pro-
cesses involving multiple steps and molecules, acted in 
a highly united and cooperative manner. Alternatively, 
numerous transcriptomics and genomic profiles pro-
vided favorable access to comprehensively analysis the 
interactions between pyroptosis and immune regula-
tion. Therefore, recognizing immune cell infiltration 
characteristics mediated by pyroptosis will contribute 
to understanding the underlying mechanism of OC 
progression and immunotherapy.

Herein, we comprehensively evaluated the associa-
tion between pyroptosis subtypes and TME infiltrating 
immune characteristics by integrating the transcrip-
tomic and genomic data of 1332 OC samples from 
TCGA-OV and five GEO (GSE140082, GSE63885, 
GSE32062, GSE26193 and GSE17260) datasets. Two 
distinct pyroptosis-associated clusters (PACs) were 
identified with consensus molecular clustering based 
on the PYAGs expression. Three gene clusters were 
classified based on differentially expressed genes 
(DEGs) between two PACs. Moreover, we established 
Pyrsig score to predict prognostic value and response 
to immunotherapy of OC. Finally, the expression of 
CD8, GSDMB and GZMB in OC samples and their cor-
relation with immune infiltration were validated with 
immunohistochemistry.
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Materials and methods
Data acquisition and preprocessing
Additional file 1: Fig. S1 shows the workflow of the pre-
sent work. Publicly available gene expression data and 
complete clinical annotations of OC were retrospec-
tively screened from the NCBI Gene Expression Omni-
bus (GEO) (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) and The 
Cancer Genome Atlas (TCGA) (https://​portal.​gdc.​can-
cer.​gov/) databases, and the expression data of 88 normal 
human ovarian samples were obtained from GTEx data-
base (https://​xenab​rowser.​net/​datap​ages/). In total, two 
RNA-sequencing (RNA-seq) datasets and five GEO OC 
cohorts (GSE140082, GSE63885, GSE32062, GSE26193 
and GSE17260) were included for subsequent analysis. 
For TCGA-OV, gene expression (fragments per kilobase 
million, FPKM) values were transformed into transcripts 
per kilobase million (TPM) values to be identical with 
these from microarrays [17]. From the GEO microarray 
database, all the raw CEL files and clinical features were 
downloaded, and batch effects caused by non-biotech-
nological bias among different datasets were corrected 
by applying the “Combat” algorithm with ‘SVA’ R pack-
age [18]. The somatic mutation and copy number varia-
tion (CNV) profiles were downloaded from the Genomic 
Data Commons (GDC, https://​portal.​gdc.​cancer.​gov/). 
Somatic mutation data, which were calculated using R 
package ‘maftools’, were sorted in Mutation Annotation 
Format (MAF) format. Significant microduplication/
deletion of copy number were explored using GISTIC 
2.0 with a threshold of FDR Q < 0.05. Methylation analy-
sis of 51 PYAGs was performed using DiseaseMeth 2.0 
(http://​bio-​bigda​ta.​hrbmu.​edu.​cn/​disea​semeth/​index.​
html), which provides a platform that integrates human 
DNA methylation information and metadata from pub-
licly available datasets. The screening conditions were 
set as follows: Control Type: controls from the same tis-
sue/cell line; Significant p-value < 0.05; Absolute Meth-
ylation Difference > 0.1. Patients without overall survival 
(OS) information, samples belong to borderline tumor, 
benign tissues or normal ovarian tissues and GEO sam-
ples belong to TCGA were excluded from this work, and 
a total of 1332 OC patients were included in the subse-
quent analyses (Additional file 9: Table S1 and S2).

Consensus molecular clustering of PYAGs
A total of acknowledged 51 PYAGs were retrieved from 
the MSigDB Team (REACTOME_PYROPTOSIS) (http://​
www.​broad.​mit.​edu/​gsea/​msigdb/) and published arti-
cles [19–21]. The full details of PYAGs were summarized 
in Additional file  9: Table  S3. Consensus unsupervised 
clustering analysis was employed to identify distinct 
PACs based on the expression of PYAGs with R package 
“ConsensusClusterPlus”, which was conducted for 1000 

times repetitions to ensure the stability of classification 
[22]. The criteria were performed as follows: the cumula-
tive distribution function (CDF) curve with gradual and 
smooth acceleration; no groups with a small sample size; 
the increased intragroup correlation and decreased inter-
group correlation.

Gene set variation analysis (GSVA) and function annotation
To investigate the biological process between different 
PACs, gene set variation analysis (GSVA) was performed 
with “GSVA” R packages, and the hallmark.

Gene set (c2.cp.kegg.v7.4) were extracted from the 
MSigDB database for GSVA analysis [23, 24]. Adjusted 
P with value less than 0.05 was regarded as statistically 
significance. Functional annotation for PYAGs were per-
formed by the clusterProfiler R package [25], with the 
cutoff value of FDR < 0.05.

Estimation of TME immune cell infiltration and immune 
response predictor
The ssGSEA (single-sample gene-set enrichment analy-
sis) algorithm were employed to evaluate the relative 
abundance of each type immune cell infiltration in the 
TME of OC [26], which was represented by an enrich-
ment score in ssGSEA analysis and normalized to unity 
distribution from 0 to 1. The fractions of 22 distinct 
immune cell subsets of every OC sample were estimated 
by the CIBERSORT algorithm with the deconvolution 
approach [27]. ESTIMATE (Estimation of Stromal and 
Immune Cells in Malignant Tumors using Expression 
Data) algorithm, which concludes the tumor cellular-
ity as well as the tumor purity according to the unique 
characteristics of the transcriptional profiles, was used 
to calculate the stromal score, immune score and ESTI-
MATE score, predicting the level of infiltrating immune 
and tumor purity [28]. A high immune score along with 
low tumor purity indicated abundant immune cell infil-
tration in tumor tissues. We also utilized Microenviron-
ment Cell Populations-counter (MCP-counter), TIMER, 
QUANTISEQ, EPIC and XCELL to delineate the immu-
nogenomic landscape of immune infiltration and func-
tions in ovarian cancer [29–32].

Identification of DEGs between PACs and their functional 
annotation
Two distinct PACs in patients were concluded by above 
consensus clustering algorithm. DEGs associated with 
different PACs were identified using R package “limma”. 
Adjusted P value less than 0.001 was set as significance 
filtering criteria. To further investigate potential biologi-
cal functions of DEGs and identify the related gene func-
tions and enriched pathways, package “clusterprofiler” 
was conducted by software R [25].

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://xenabrowser.net/datapages/
https://portal.gdc.cancer.gov/
http://bio-bigdata.hrbmu.edu.cn/diseasemeth/index.html
http://bio-bigdata.hrbmu.edu.cn/diseasemeth/index.html
http://www.broad.mit.edu/gsea/msigdb/
http://www.broad.mit.edu/gsea/msigdb/


Page 4 of 20Gao et al. Journal of Ovarian Research           (2023) 16:27 

Relationship of PACs with clinical characteristics 
and prognosis of OC
To explore the clinical significance of the different sub-
types identified by consensus clustering algorithm, 
relationships between molecular subtypes and clinico-
pathological characteristics, prognosis in OC patients 
were analyzed. The patient characteristics included age, 
differentiation grade, and FIGO stage. Moreover, differ-
ences in OS among different clusters were evaluated with 
Kaplan–Meier curves generated by the R packages “sur-
vival” and “survminer”.

Construction of Pyrsig scoring system
To quantify pyroptosis patterns of individual tumors, 
a scoring system was developed based on pyroptosis-
associated prognostic genes, termed as Pyrsig score. Spe-
cifically, overlapping DEGs were employed to perform 
prognostic analysis for each gene using a univariate Cox 
regression model. Then patients were classified into three 
different gene clusters (gene cluster A/B/C) for deeper 
analysis using consensus clustering algorithm based on 
PYAGs with prognostic value. Concomitantly, PCA was 
employed to establish Pyrsig score based on the expres-
sion profile of 889 genes with survival significance, and 
principal components 1 and 2 were extracted and served 
as the final gene signature scores. The Pyrsig score was 
calculated as follows:

where i is the expression of prognostic genes in ovarian 
cancer.

Correlation between Pyrsig score and drug susceptibility, 
immunotherapy
Genomics of Drug Sensitivity in Cancer (GDSC, https://​
www.​cance​rrxge​ne.​org/) [33], as the largest pub-
lic pharmacogenomics databases, was used to predict 
chemotherapy drug sensitivity. The semi-inhibitory 
concentration (IC50) values of chemotherapeutic drugs 
commonly for OC treatment were estimated using the 
package “pRRophetic” [34].

We performed a systematical search for immune 
checkpoint genes, immune chemokines, interleukin, 
interferon as well as epithelial-mesenchymal transition 
(EMT) -related genes, which were extracted to explore 
their relationship with Pyrsig score [35]. Immunophe-
noscore (IPS) could evaluate responsiveness to anti-PD-1 
immunotherapy [26]. The Tumor Immune Dysfunc-
tion and Exclusion (TIDE) algorithm was utilized to 
explore distinct tumor immune escape mechanisms [36], 

Pyrsig score = (PC1i + PC2i)

including dysfunction of tumor infiltration cytotoxic T 
lymphocytes (CTLs) and exclusion of CTLs by immuno-
suppressive factors. Furthermore, the immunotherapeu-
tic cohorts, advanced urothelial cancer with intervention 
of atezolizumab, an anti-PD-L1 antibody (IMvigor210 
cohort) [37] (http://​resea​rch-​pub.​Gene.​com/​imvig​or210​
coreb​iolog​ies), was also screened to evaluate the response 
to immunotherapy.

Immunohistochemistry staining
65 paraffin-embedded ovarian cancer tissue microar-
rays were obtained from Department of Obstetrics and 
Gynecology, Union Hospital, Tongji Medical College, 
Huazhong University of Science and Technology. All 
participants were informed consent and approved by the 
Research Ethics Committee of Union Hospital. Immu-
nohistochemical staining procedure was performed by 
the streptavidin-peroxidase (SP) kit (ZSGB-BIO, China) 
based on the manufacturer’s instructions. Briefly, the 
paraffin sections were deparaffinized and rehydrated, fol-
lowed by antigen retrieval with Tris-EDTA buffer (pH 
6.0) through microwave treatment. Endogenous peroxi-
dase activity was blocked with 10% hydrogen peroxide 
for 30  min, and nonspecific binding was blocked with 
normal goat serum for 30 min at room temperature. The 
tumor sections were then incubated with primary anti-
bodies overnight at 4 °C. The working concentrations of 
primary antibodies were as follows: Rabbit monoclonal 
anti-CD8 (1:100, Abcam Cambridge, ab237709), Rab-
bit polyclonal anti-GSDMD (1:200, Abclonal China, 
A18281) and Rabbit polyclonal anti-GZMB (1:200, 
Abclonal China, A2557), respectively. Phosphatebuff-
ered saline (PBS) served as negative control instead of 
primary antibody, rabbit IgG served as isotype control 
instead of primary antibody. The slides were then labelled 
with biotinylated anti-rabbit IgG and peroxidase-labeled 
streptavidin. After washed with PBS for three times, the 
sections were stained with DAB and observed under a 
microscope. Based on the chromatosis intensity, no pig-
mentation, light yellow, brown yellow, and dark brown 
were scored 0, 1, 2, and 3, respectively. The percentage of 
stained cells observed in the visual field, less than 5%: 0, 
5–25%: 1, 26–50%: 2, 51–75%: 3, and greater than 75%: 
4, respectively. The final score was obtained by multiply-
ing above two scores: 0–2, (−); 3–4, (+); 5–8, (++); and 
9–12, (+++). To control errors, the stained images were 
independently observed by two senior pathologists.

Statistical analysis
R software (version 4.1.1) was employed for all statistical 
analyses. The statistical significance between two groups 
was calculated by Student’s t tests or Wilcoxon tests, as 
appropriate. Comparisons among more than two groups 

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
http://research-pub.Gene.com/imvigor210corebiologies
http://research-pub.Gene.com/imvigor210corebiologies
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estimated by one-way ANOVA or Kruskal-Wallis tests. 
The “multcomp” package and “ggplot2” were employed 
to account for multiple testing. The chi-square test was 
applied to analyze the differences in clinicopathological 
parameters between Pyrsig score groups. The prognostic 
survival curves were achieved by the Kaplan–Meier plot-
ter, and survival differences were evaluated with the log-
rank test using R package “survminer”. Spearman analysis 
was conducted to calculate the correlation coefficient. A 
potential immune therapy response was predicted with 
TIDE algorithm. Two-sided with statistical significance 
was set at P < 0.05.

Results
Landscape of genetic characteristics and transcriptional 
patterns of pyroptosis‑associated genes (PYAGs) in ovarian 
cancer
A total of 51 pyroptosis-associated genes (PYAGs) 
were finally identified and included in this study. Their 
potential biological functions regarding pyroptosis and 
molecular regulation mechanisms are summarized in 
Fig.  1A. We show somatic mutations and copy number 
variation (CNV) of these 51 PYAGs in 436 ovarian can-
cers from the TCGA-OV database with a waterfall dia-
gram. A relatively high mutation frequency observed in 
this TCGA-OV cohort (Fig. 1B). A total of 400 (91.97%) 
among 436 samples experienced mutations in PYAGs 
(Fig. 1B). TP53 (88%) exhibited the highest mutation fre-
quency, followed by NLRP3 (3%), NLRP2 (3%) NOD1 
(2%), NLRP6 (1%), GSDMB (1%), NLRC4 (1%), NOD2 
(1%), TP63 (1%), CASP5 (1%), IRF1/2 (all 1%), NLRP1/7 
(all 1%), PLCG1(1%), CASP1/6/8 (all 1%), CHMP4C (1%), 
PPKACA (1%), and TNF (1%), while the other PYAGs did 
not show any mutations in these OC samples (Fig.  1B). 
As TP53 showed the highest mutation frequency, we 
explored the relationship between TP53 mutation and 
PYAGs expression. The results showed that expression 
levels of 2 (NLRC4 and IL1A) among 51 PYAGs were 
significantly associated with TP53 mutation status (Addi-
tional file 2: Fig. S2A-B). As to CNV in PYAGs, GSDMD, 
GSDMC, TP63, CHMP6, PRKACA, NLRP3, TNF, 
AIM2, PJVK, BAK1, GZMB, CASP4, CASP5, CASP1, 
PYCARD, CASP8, CHMP4C, NLRC4, CHMP4B, and 
CHMP2B showed widespread CNV amplifications, 
while CASP9, NLRP7, NLRP2, CHMP2A, CASP3, IRF2, 
CASP6, NLRP6, GZMA, BAX, PLCG1, ELANE, GPX4, 
and CHMP7 showed prevalent CNV deletions (Fig. 1C). 
The locations of CNV alterations of 51 PYAGs on their 
respective chromosomes were shown in Fig.  1D. Fur-
thermore, principal component analysis (PCA) based on 
expression of these 51 PYAGs in TCGA-OV and GTEx 
samples revealed that PYAGs could completely distin-
guish OV samples from normal samples (Fig. 1E-F). We 

further analyzed DNA methylation levels of 51 PYAGs 
with DiseaseMeth 2.0, the results showed AIM2, CASP1, 
CASP8, GSDMC and NLRP6 exhibited significantly 
lower methylation levels compared with those in normal 
control group (Additional file  2: Fig. S2C-G and Addi-
tional file 9: Table S4).

We further investigated mRNA expression levels of 
PYAGs between OC and normal samples in TCGA-
OV and GTEx database, and found a positive correla-
tion between mRNA expression and CNV alterations in 
most of PYAGs. Compared to normal ovarian tissues, 
the mRNA expression levels of PYAGs with CNV gain 
was markedly increased in OC tissues, such as GSDMC, 
CHMP6, NLRP3, TNF and AIM2, while PYAGs with 
CNV loss showed lower expression in tumors, such as 
CASP9, CHMP7, ELANE, PLCG1 and BAX. However, 
some PYAGs with CNV gain, such as GSDMD, TP63, 
PRKACA, PJVK and CASP4, showed downregulated 
mRNA expression in ovarian cancers, and some PYAGs 
with CNV loss, such as IL18, GPX4, GZMA, NLRP6 and 
CASP6, showed upregulated mRNA expression in ovar-
ian cancers (Fig. 1F). Thus, while CNV can explain many 
observed changes in PYAGs expression, CNV is not the 
only factor involved in the regulation of mRNA expres-
sion. The above findings indicate the high heterogeneity 
of genomic and transcriptomic alteration landscape in 
PYAGs of OC patients, suggesting that pyroptosis might 
play a crucial role in OC development and progression.

Identification of pyroptosis‑associated subtypes in OC
Firstly, we explored prognostic value of PYAGs in 
patients across 33 cancer types. We found that all PYAGs 
were associated with overall survival of patients in at 
least one cancer type (Additional file 2: Fig. S2H). Subse-
quently, a total of 1332 ovarian cancer samples from six 
eligible OC cohorts (TCGA-OV, GSE140082, GSE63885, 
GSE32062, GSE26193, and GSE17260) were enrolled 
for further analysis. Kaplan–Meier analysis and univari-
ate Cox regression revealed the prognostic values of 49 
PYAGs in these OC patients, and P < 0.05 was selected as 
the threshold for filtering (Additional file 2: Fig. S2I and 
Additional file 9: Table S5). The comprehensive landscape 
of PYAGs interactions, molecular connections, and their 
prognostic significance in patients with OC was demon-
strated in a pyroptosis network (Fig.  2A and Additional 
file  9: Table  S6). Furthermore, through Spearman’s cor-
relation analysis, we found a strong relationship of the 
51 PYAGs with the TME-infiltrating immune cells utiliz-
ing the GSEA algorithm in TCGA-OV database. Most of 
these PYAGs were positively correlated with the immune 
cells in varying degrees. However, six PYAGs (CASP9, 
CHMP7, NLRP1, PJVK, PLCG1 and PRKACA) was 
negatively related to almost all these immune infiltration 
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Fig. 1  Landscape of genetic alterations and transcriptional patterns of PYAGs in ovarian cancer. A Summary of the potential biological functions 
of pyroptosis and their molecular regulation mechanism. B Genetic alterations of 51 PYAGs in 436 patients with ovarian cancer from TCGA-OV 
cohort. C CNV variation frequency of 51 PYAGs in ovarian cancer. Red dot represents the amplification frequency; blue dot represents the deletion 
frequency. D The location of CNV alteration of 51 PYAGs on 23 chromosomes. E Principal component analysis (PCA) for the expression of 51 PYAGs 
to distinguish ovarian cancer from normal samples in TCGA-OV cohort and GTEx data. Red dot: ovarian cancer samples; Blue dot: normal ovarian 
samples. F Expression levels of 51 PYAGs between ovarian cancer and normal ovarian tissues from TCGA-OV and GTEx cohorts. *P < 0.05; **P < 0.01; 
***P < 0.001. PYAG: pyroptosis-associated genes; OV: ovarian cancer; TMB: tumor mutation burden; CNV: copy number variation; PCA: Principal 
component analysis
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cells (Fig. 2F). The above results indicated that cross-talk 
among different PYAGs may play critical roles in the for-
mation of different pyroptosis patterns and TME cell-
infiltrating characterization between individual tumors.

To further explore the involvement of pyroptosis in 
OC, a consensus clustering algorithm was employed 
to stratify the patients based on the qualitatively differ-
ent expression of these 49 genes (Additional file  3: Fig. 

S3A-H). Accordingly, k = 2 was identified as an optimal 
selection for clarifying the entire samples into two pyrop-
tosis-associated clusters (PAC) including PAC1 (n = 515 
cases) and PAC2 (n = 819 cases) (Fig. 2B). Principal com-
ponent analysis (PCA) analysis revealed significant dif-
ferences in the pyroptosis transcription profiles between 
the two distinct clusters (Fig. 2C), and patients in PAC1 
showed significant survival advantage compared with 

Fig. 2  Consensus clustering to identify PACs and their correlation with clinicopathological and biological characteristics. A Interaction among 
PYAGs in ovarian cancer shown by network. B Two PACs (k = 2) and their correlation areas calculated by consensus clustering algorithm. 
C Differences in the transcription profiles between the two PACs analyzed by PCA. D Survival difference between the two PACs shown by 
Kaplan-Meier curves based on five GEO cohorts (GSE140082, GSE17260, GSE26193, GSE32062, and GSE63885) and TCGA-OV cohort. E Differences 
in clinicopathologic features, expression levels of PYAGs between two PACs in OC cohorts with heatmap. F Correlation between 51 PYAGs and 
immune cells in the gathered TCGA-OV cohort by heatmap. G Activated biological pathways in two PACs visualized by heatmap through GSVA 
enrichment analysis. *P < 0.05; **P < 0.01; ***P < 0.001. PYAG: pyroptosis-associated genes; PAC: pyroptosis-associated cluster; OV: ovarian cancer; 
PCA: Principal component analysis; GSVA: Gene Set Variation Analysis; OS: overall survival
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those with PAC2 (P = 0.001, Fig.  2D). Furthermore, as 
shown in Fig.  2E, Patients in PAC2 were preferentially 
related to advanced stage (FIGO III-IV) and poor differ-
entiation (histological grade 3) compared to patients in 
PAC1 (P < 0.05).

TME infiltration characteristics in distinct PACs
To explore the biological behaviors related to the two 
distinct PACs, we conducted GSVA enrichment analy-
sis against the Hallmarker gene set. As shown in Fig. 2G 
and Additional file  9: Table  S7, PAC1 was markedly 
enriched in immune fully-activated pathways, including 

inflammatory response, interferon gamma response, 
natural killer cell mediated cytotoxicity, T cell and B 
cell receptor signaling pathway as well as NOD-like and 
Toll-like receptor signaling pathways, cell adhesion and 
JAK-STAT signaling pathways (Fig. 2G). While PAC2 was 
prominently associated with immune suppression biolog-
ical process (Fig. 2G). Accordingly, subsequent analysis of 
TME immune cell infiltration with ssGSEA indicated that 
PAC1 showed higher level of infiltration of most immune 
cells than PAC2, including activated CD4+/CD8+T cells, 
activated B cells, natural killer cell, macrophage, eosino-
phil, mast cell and plasmacytoid dendritic cell (Fig. 3A). 

Fig. 3  Characterization of TME infiltration characteristics in the two PACs. A Abundance of 23 tumor-infiltrating immune cells in two PACs using 
the ESTIMATE algorithm (Kruskal-Wallis H test). B,C TME score and tumor purity of different PACs analyzed with vioplot. D Correlation between TME 
score and tumor-infiltrating immune cells of two PACs by pheatmap. E Fraction of tumor-infiltrating lymphocyte cells in two PACs with CIBERSORT 
algorithm. F-I Expression levels of PD-L1, PD-1, CTLA4 and LAG3 between two PACs. *P < 0.05; **P < 0.01; ***P < 0.001. PYAG: pyroptosis-associated 
gene; TME: tumor microenvironment; ESTIMATE: Estimation of Stromal and Immune Cells in Malignant Tumors using Expression Data
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What’s more, we utilized ESTIMATE algorithm to evalu-
ate immune infiltration (stromal score, immune score, 
and ESTIMATE score) and tumor cell purity (Tumor 
Purity) (Additional file  9: Table  S8) of the tumors with 
PAC1 versus those with PAC2, which further demon-
strated that PAC1 displayed higher immune scores, stro-
mal score and ESTIMATE score compared with PAC2, 
and PAC2 showed a higher tumor purity than PAC1 
(Fig. 3B-D), suggesting that abundant nontumor compo-
nents (e.g., immune cells and stromal cells) were existed 
in ovarian cancer with PAC1. We also characterized the 
infiltration of 22 human immune cells in OC between 
the two clusters with CIBERSORT, which demonstrated 
obviously higher infiltration of activated memory CD4+ 
T cells, activated NK cells, M1 macrophages, T gamma 
delta cells, activated mast cells and neutrophils in the 
PAC1 compared to PAC2, while M0 and M2 mac-
rophages, naive B cells, and regulatory T cells (Tregs) 
were significantly enriched in the PAC2 (Fig.  3E). Fur-
thermore, the expression of immune checkpoints, such 
as PD-L1, PD-1, CTLA4 and LAG3, were significantly 
upregulated in PAC1 than those in PAC2 (Fig.  3F-I). 
These findings suggest that the two clusters had signifi-
cantly distinct TME cell infiltration characterization.

Gene subtypes based on pyroptosis phenotype‑related 
DEGs in OC
Although the PYAGs were classified into two clusters 
by consensus clustering algorithm in OC patients, the 
underlying genetic alterations and potential biologi-
cal behavior within these clusters remains to be clari-
fied. A total of 4342 overlapping DEGs were identified 
between two PACs. GO enrichment analysis showed 
that these DEGs were significantly enriched in biologi-
cal processes related to immune regulation, such as T 
cell activation and leukocyte cell − cell adhesion (Addi-
tional file  3: Fig. S3I-K and Additional file  9: Table  S9). 
KEGG analysis demonstrated DEGs were enriched in 
cytokine − cytokine receptor and tumor-related path-
ways (Additional file 3: Fig. S3L-N and Additional file 9: 
Table  S9), suggesting that pyroptosis exerts a nonneg-
ligible function in the immune regulation of the TME. 
We then employed Univariate Cox regression analysis 
to screen out 889 DEGs with significant favorable over-
all survival (OS) of OC patients (all P < 0.05) (Additional 
file  9: Table  S10). Based on the transcriptional levels 
of 889 pyroptosis-related gene signatures, unsuper-
vised consensus clustering algorithm was performed 
to obtain three distinct pyroptosis gene subtypes which 
were identified as gene cluster A (534 cases), gene lus-
ter B (465 cases), and gene cluster C (335 cases), respec-
tively (Fig.  4A and Additional file  4: Fig. S4A-H). PCA 
analysis confirmed discernible dimensions among the 

transcription profiles of the three gene clusters (Fig. 4B). 
Survival analysis showed that patients in gene cluster C 
(335 patients) showed the worst survival outcome among 
the three subtypes (P < 0.001) (Fig.  4C). Furthermore, 
gene cluster C was associated with advanced FIGO stage 
and grade 3, and patients in PAC1 and gene cluster A 
showed favorable overall survival (Fig.  4D), which indi-
cated that three distinct gene clusters were characterized 
by different clinicopathologic feature and survival out-
come. Moreover, three gene clusters displayed significant 
differences in the expression of 49 PYAGs (Fig. 4E).

To explore the potential role of the pyroptosis-related 
gene signatures in the TME immune infiltration, we ana-
lyzed the expression of immune checkpoints, chemokine, 
cytokines and other factors among three gene clus-
ters of OC, and found that the expressions of immune 
checkpoints (PD-L1, CTLA-4, and LAG3), chemokines 
(CXCL10, CCL5, and CXCL13), interleukins interfer-
ons (IFNG, IFNB1, and IFNAR2) and MHC molecules 
(HLA-A, HLA-B, and HLA-C) [26] were significantly 
upregulated in gene cluster A and B compared with those 
in gene cluster C (Fig. 4F and Additional file 4: Fig. S4I-
L), suggesting that gene cluster A and B was regarded as 
immune activated characteristic. However, gene cluster 
C showed higher expression of molecules (TGF-β2 and 
Smad9) related with TGF-β/EMT pathway than gene 
cluster A and B (Additional file  4: Fig. S4M), indicating 
gene cluster C was deemed as stromal activated charac-
teristic and tumor promotion.

Construction of Pyrsig score and exploration of its clinical 
relevance
Given that the crucial regulation function of PYAGs in 
prognostic evaluation and TME immune landscapes, 
we further constructed a scoring system with PCA algo-
rithm, termed as Pyrsig score, to quantify pyroptosis 
regulation and immune microenvironment in individual 
OC sample. We showed that low Pyrsig score (59% alive 
and 41% dead) presented prominent survival advan-
tage than high Pyrsig score group (42% alive and 58% 
dead) (P < 0.001, Fig. 5A, B), indicating that Pyrsig score 
showed potentially prognostic value of OC patients. 
More importantly, significant differences in Pyrsig score 
were observed among different PACs (Fig. 5C) and three 
gene clusters (Fig. 5D), gene cluster A showed the lowest 
Pyrsig score while gene cluster C presented the highest 
Pyrsig score (Additional file 9: Table S11) (all P < 0.001). 
The distribution of samples in two PACs (PAC1 and 
PAC2), three gene clusters (gene cluster A/B/C), and two 
Pyrsig score groups (low and high score) were illustrated 
with alluvial diagram (Fig. 5E), indicating that gene clus-
ter C with PAC2 displayed a higher Pyrsig score, show-
ing worse survival outcome, whereas gene cluster A 
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Fig. 4  Construction of gene clusters based on PACs-related DEGs. A Identification of three gene clusters (k = 3) based on PACs-related DEGs by 
consensus clustering algorithm, gene cluster A (534 patients), gene cluster B (465 patients), and gene cluster C (335 patients). B The remarkable 
difference among transcriptome profiles of three gene clusters with PCA. C The OS of three gene clusters in TCGA and five GEO cohorts shown 
by Kaplan-Meier curves (log-rank tests, P < 0.001). D Relationships between clinicopathologic features and three gene clusters analyzed by 
unsupervised clustering. E Differences in the expression of 49 PYAGs among three gene clusters. F Differences in the expression levels of immune 
checkpoints among three gene clusters in TCGA and five GEO cohorts. *P < 0.05; **P < 0.01; ***P < 0.001. DEGs: Differentially expressed genes; PCA: 
Principal component analysis; OS: Overall survival
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with PAC1 exhibited a lower Pyrsig score with favorable 
prognosis (Fig.  5E). Additionally, Pyrsig score showed 
no statistic difference between serous ovarian cancer 
and others types in OC (P > 0.05, Additional file  5: Fig. 
S5A-B) and displayed statistical significance among dif-
ferent grades (G1-2 vs. G3) (P < 0.001, Additional file  5: 
Fig. S5C-D) and FIGO stages (I-II vs. III-IV) (P < 0.01, 
Additional file  5: Fig. S5E-F). Survival status in patients 
with serous ovarian cancer (Additional file  5: Fig. S5G), 

G1-2(Additional file 1: Fig. S5I), G3 (Additional file 5: Fig. 
S5J), stage III-IV (Additional file 5: Fig. S5L) all displayed 
statistical significance.

Increasing evidence has demonstrated that somatic 
mutation patterns were associated with responsive-
ness to immunotherapy [38]. We found no difference 
in tumor mutation burden (TMB) between the low and 
high Pyrsig score groups (Additional file  5: Fig. S5M). 
However, Kaplan-Meier analysis showed that patients in 

Fig. 5  Construction of Pyrsig score and exploring the relationship between Pyrsig score and clinical features. A, B The relationship between 
survival outcome and Pyrsig score in patients from TCGA and five GEO cohorts (Log-rank test, P < 0.001). C, D Level of Pyrsig score in two PACs and 
three gene clusters (Kruskal-Wallis H test, P < 0.01). E Distributions of two PACs, three gene clusters, Pyrsig scores and survival outcomes in OC from 
TCGA-OV and five GEO cohorts with Alluvial diagram F Survival analysis of patients with low and high TMB in TCGA-OV cohort with Kaplan-Meier. 
G Difference in prognostic advantages among four groups stratified by Pyrsig score and TMB in TCGA-OV cohort shown by Kaplan-Meier curves 
(Log-rank test, P = 0.005). H, I Somatic mutation features established with low and high Pyrsig scores by waterfall plot. H-TMB: High tumor mutation 
burden; L-TMB: Low tumor mutation burden
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high TMB group showed better survival outcome than 
those in low TMB group (P = 0.024, Fig.  5F). Through 
combination of Pyrsig scores and TMB, we revealed that 
in high Pyrsig score group, the survival rate of patients 
with high TMB was higher than that of patients with 
low TMB (log-rank test, P = 0.005, Fig.  5G). We then 
analyzed the distribution variations of somatic muta-
tions between the two Pyrsig score groups in TCGA-OV 
cohort. The top ten mutated genes were TP53, TTN, 
MUC16, CSMD3, TOP2A, NF1, USH2A, HMCN1, 
RYR2, and FAT3 (Fig.  5H, I). Patients with a high Pyr-
sig score showed higher frequencies of USH2A, TOP2A 
and FLG mutations compared to those with a low Pyrsig 
score. However, opposite effect was observed regarding 
the mutation levels of TP53, TTN, and MUC16 (Fig. 5H, 
I). Moreover, we assessed potential correlation between 
Pyrsig score and Cancer Stem Cell (CSC) index in OC, 
and found that CSC index (RNAss and DNAss) showed 
no significant correlation with Pyrsig score in OC (both 
P > 0.05) (Additional file  5: Fig. S5N-O), indicating that 
OC cells with different Pyrsig score possessed no distinct 
stem cell properties and cell differentiation.

The role of Pyrsig score in TME and immune 
checkpoints of OC
We firstly performed ssGSEA algorithm to evaluate TME 
immune infiltration in different Pyrsig score groups, and 
detected that infiltration of immune cells, including acti-
vated B cells, activated CD4+/CD8+ T cells, natural killer 
cell, eosinophil, mast cell, plasmacytoid dendritic cell, 
were significantly lower in patients with low Pyrsig score 
than those with high Pyrsig score (Fig. 6A). We also found 
negative correlation between Pyrsig score and stromal 
score (R=-0.11, P = 0.00013), immune score (R=-0.72, 
P < 2.2e-16), ESTIMATE score (R=-0.47, P < 2.2e-16), 
and positive correlation between Pyrsig score and tumor 
purity (R=-0.47, P < 2.2e-16) (Fig.  6B-D and Additional 
file 6: Fig. S6A-D), suggesting that low Pyrsig score could 
predict immune activation-related features. Furthermore, 
we integrated TIMER, CIBERSORT, CIBERSORT − ABS, 
QUANTISEQ, MCP_COUNTER, XCELL, and EPIC to 
calculate the levels of immune cell infiltration in OC sam-
ples, which demonstrated that immune cells with domi-
nant immune activation and anti-tumor activity were 
prominently enriched in low Pyrsig score group, such as 
CD8+ T cell _TIMER, Macrophage M1_XCELL, central 
memory CD8+ T cell _XCELL, plasmacytoid dendritic 
cell_XCELL, NK cell activated_CIBERSORT-ABS, NK 
cell_MCPCOUNTER, myeloid dendritic cell activated_
XCELL, macrophage M1_XCELL, central memory CD8+ 
T cell _XCELL, (Fig. 6E, F and Additional file 6: Fig. S6E), 
further confirming the crucial role of pyroptosis in tumor 
immune infiltration.

Furthermore, we investigated the correlation between 
immune checkpoints and Pyrsig score, and showed 
that patients with low Pyrsig score presented signifi-
cantly higher expression of most of immune checkpoints 
compared with patients with high Pyrsig score group, 
including PD-1, PD-L1, CTLA-4, LAG3 and TNFRSF9 
(Fig. 6G). Our researches also showed significantly higher 
expressions of chemokines, interleukins, interferons and 
MHC complex in low Pyrsig score group (Additional 
file 6: Fig. S6F-I), and regulators related to TGF-β/EMT 
pathway (ACAT2, VIM, COL4A1, TGFB2, PDGFRA, 
TWIST1 and SMAD9) were significantly upregulated in 
high Pyrsig score group (Additional file 6: Fig. S6J). The 
above results revealed that Pyrsig score was associated 
with the immune infiltration of TME in OC.

Pyrsig score predicts chemotherapy sensitivity 
and immunotherapy
We comprehensively evaluated the sensitivities of chem-
otherapy drugs in different Pyrsig score groups, patients 
in low Pyrsig score group showed higher IC50 value for 
chemotherapeutics including cisplatin, vinorelbine, doc-
etaxel, and doxorubicin (Additional file  7: Fig. S7A and 
S7D-F). While IC50 values of paclitaxel, olaparib, gem-
citabine, gefitinib, sunitinib were significantly lower in 
the patients with low Pyrsig score group than those in 
high Pyrsig score group (Additional file 7: Fig. S7B-C and 
Additional file 7: Fig. S7G-I), suggesting that Pyrsig score 
could predicted the sensitivity of chemotherapeutic drug.

Considering that Pyrsig score was associated with 
the immune infiltration of tumor microenvironment. 
Immunotherapies including CTLA-4/PD-L1 inhibi-
tors present a wide developmental foreground in can-
cer therapy. TIDE and IPS were highly recommended 
to assess the immune response [26, 36]. We discovered 
that the TIDE and IPS score were significantly elevated 
in the low Pyrsig score group (all P < 0.001, Fig.  7A, B), 
which demonstrated Pyrsig score played a crucial role in 
predicting immune response. Based on the IMvigor210 
cohort, we further revealed that patients with CR (com-
plete response) exhibited lowest Pyrsig score than those 
with PD (partial response) (P = 0.21, Fig.  7C, D). The 
immune infiltration of IMvigor210 cohort was classi-
fied into three phenotypes as follows: deserted immune 
phenotype, inflamed immune phenotype, and excluded 
immune phenotype. We observed that the Pyrsig score 
in inflamed immune group was lower than that in the 
other two groups (P < 0.01, Fig.  7E, F). Pyrsig score was 
also correlated with PD-L1 expression on tumor cells 
(TC) and immune cells (IC) (Fig. 7G-J). Survival analysis 
showed that patients with low Pyrsig score exhibited sig-
nificantly clinical benefits and a markedly prolonged sur-
vival following anti-PD-L1 treatment (P = 0.017, Fig. 7K), 
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Fig. 6  Evaluating the relationship of Pyrsig score with TME and immune-related characteristics. A The abundance of 23 tumor-infiltrating immune 
cells in low and high Pyrsig scores with Estimate algorithm (Kruskal-Wallis H test). B, C TME score and tumor purity of different Pyrsig scores shown 
by vioplot. D Correlation between TME score, tumor-infiltrating immune cells and Pyrsig score shown by pheatmap. E Correlation matrix of all 
22 immune cell proportions by heatmaps. F Heatmap for TME infiltrating cells and immune score based on TIMER, CIBERSORT, CIBERSORT − ABS, 
QUANTISEQ, MCP_counter, XCELL and EPIC algorithms in different Pyrsig scores. G Differences in the expression levels of immune checkpoints in 
different Pyrsig scores. *P < 0.05; **P < 0.01; ***P < 0.001
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Fig. 7  Relationships between Pyrsig score and responsiveness to anti-PD-L1 immunotherapy. A, B Relative distribution of TIDE (A) and IPS (B) in 
different Pyrsig scores in TCGA-OV, respectively. C, D The correlation of anti-PD-L1 responsiveness with low and high Pyrsig scores in IMvigor210 
database. E, F The correlation of immune phenotypes with low and high Pyrsig scores in IMvigor210 database. (G-J) The correlation of PD-L1 
expression on tumor cells (G, H) and immune cells (I, J) with low and high Pyrsig scores in IMvigor210 database. K OS of patients with different 
Pyrsig scores in IMvigor210 database by Kaplan-Meier curve. L OS of patients with low and high neoantigen burden in IMvigor210 database by 
Kaplan-Meier curve. M OS of patients with anti-PD-L1 immunotherapy stratified by both Pyrsig score and neoantigen burden with Kaplan-Meier 
curves. SD: stable disease; PD: progressive disease; CR: complete response; PR: partial response. H: high; L: Low; Neo: neoantigen burden
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indicating that Pyrsig score could predict responsiveness 
to anti-PD-L1 immunotherapy. Researches suggested 
that tumor neoantigen burden played a crucial role in 
immunotherapeutic efficacy. In IMvigor210 cohort, 
patients with low neoantigen burden showed poorer 
clinical outcome than those with high neoantigen burden 
(P < 0.001, Fig. 7L). Furthermore, patients with combina-
tion of high neoantigen burden and low Pyrsig score pre-
sented a great prognostic advantage (P < 0.001, Fig. 7M). 
The above work strongly indicated that Pyrsig score was 
significantly correlated with tumor immune characteris-
tic and response to anti-PD-L1 immunotherapy, and the 

established Pyrsig score would contribute to predicting 
prognosis of patients.

Development of a nomogram to predict survival of OC
Considered the inconvenience clinical utility of Pyrsig 
score in predicting OS in patients with OC, a nomogram 
integrating Pyrsig score and clinicopathological param-
eters (age, FIGO stage and differentiation grade) was 
constructed to predict 1-, 3-, and 5- year OS (Fig.  8A). 
Time-dependent ROC analysis demonstrated the nomo-
gram exhibited much more powerful capacity of survival 
prediction compared with other clinicopathological char-
acteristics, with an average AUC above 0.814 (Fig.  8B). 

Fig. 8  Construction and validation of Pyrsig score as an independent prognosis factor in a nomogram. A Nomogram for predicting the probability 
of patient mortality at 1-, 3- and 5- year OS of OC patients based on four independent prognosis factors. B ROC curves of Pyrsig score and clinical 
parameters of OC in TCGA-OV cohort. C DCA curves of Pyrsig score and clinical parameters of OC in TCGA-OV cohort. D-F ROC curves for predicting 
the 1-, 3-, and 5- year OS of OC patients in all TCGA, training sets and testing sets. G-I Calibration curves of the nomogram for predicting of 1-, 3-, 
and 5- year OS of OC patients in all TCGA, training and testing sets. ROC, receiver operating characteristic. DCA, decision curve analysis. OS: overall 
survival. **P < 0.01, ***P < 0.001



Page 16 of 20Gao et al. Journal of Ovarian Research           (2023) 16:27 

Pyrsig score suggested the most powerful capacity for 
survival prediction and clinical parameters of OC in 
TCGA cohort with DCA curves (Fig.  8C). AUC experi-
ments on the nomogram model showed higher accuracy 
for OS at 1-, 3-, and 5- years in the whole TCGA, train-
ing set, testing set (Fig.  8D-F). In the calibration analy-
sis, the prediction lines of the nomogram for 1-, 3-, and 
5- year survival probability were extremely close to the 
ideal performance (Fig. 8G-I), indicating a high accuracy 
of the nomogram and powerful capacity for prognostic 
prediction.

Validation of the expression levels of GSDMD and GZMB 
in ovarian cancer
As shown in Additional file  2: Fig. S2H, GZMB was a 
protective factor in OC, we further explored the expres-
sion of 49 PYAGs in different Pyrsig score group and 
found that expressions of GSDMD and GZMB were sig-
nificantly higher in low Pyrsig score group than those 
in high Pyrsig score group (Additional file  8: Fig. S8A). 
We further found that high expressions of GSDMD 
and GZMB displayed favorable prognosis in OC from 
six cohorts (P = 0.034 and P = 2.08E-5, respectively) 
(Fig.  9A), GSDMD and GZMB were significantly asso-
ciated with the expression of immune checkpoint mol-
ecules with pan-cancer analysis (Additional file  8: Fig. 
S8B-C). We further investigated the relationship of two 
genes with CD8 expression, and found that expression of 
CD8 were positively correlated with GSDMD (R = 0.23, 
P-value = 1.4e-06) and GZMB (R = 0.7, P-value = 3.9e-
65) (Fig.  9B). Furthermore, according to the expression 
of CD8 in tissues microarray with IHC, OC samples 
were classified into three immune types: immune desert/
excluded/inflamed tumors (Fig. 9C), and the inflammed 
subtype showed prolonged survival than deserted sub-
type (HR = 0.272, 95%CI = 0.102–0.727, P = 0.029) 
(Fig. 9D). IHC showed that patients with higher infiltra-
tion of CD8+ T cells which indicated low Pyrsig score 
group, showed higher expression GSDMD and GZMB 
(P = 0.026 and P = 0.036, respectively) and lymphatic 
metastasis (P = 0.046) (Fig.  9E-F and Additional file  9: 
Table S12). The expression of GSDMD and GZMB were 
both significantly correlated with Pyrsig score (P = 0.018 
and P = 0.034, respectively) in 65 ovarian cancer patients 
(Additional file  9: Table  S13). Kaplan-Meier analysis 
showed high expression of CD8, GSDMD and GZMB 
exhibited better survival outcome (Fig.  9G). We further 
employed COX regression model to explore clinicopatho-
logical parameters affecting prognosis of ovarian cancer 
with forest heatmap. Univariate analysis showed GZMB 
expression (HR = 0.218, 95%CI = 0.081–0.59, P = 0.023), 
GSDMD expression (HR = 0.378, 95%CI = 0.163–
0.875, P = 0.003), CD8 expression (HR = 0.229, 

95%CI = 0.089–0.588, P = 0.002) and age at diagnosis 
(HR = 2.78, 95%CI = 1.032–7.496, P = 0.043) were signifi-
cantly associated with overall survival of OC (Additional 
file 8: Fig. S8E). Multivariate analysis showed that GZMB 
expression (HR = 0.296, 95%CI = 0.1-0.876, P = 0.028) 
and CD8 expression (HR = 0.321, 95%CI = 0.122–0.848, 
P = 0.022) were charactered as independent prognostic 
factors of OC (Additional file 8: Fig. S8F). As such, these 
findings confirms that GSDMD and GZMB plays a cru-
cial role in mediating immune infiltration.

Discussion
Mounting evidence demonstrated that pyroptosis took 
on an indispensable role in inflammation, immune 
response as well as antitumor effect through interaction 
with a variety of components in TME [39, 40]. The land-
scape of TME infiltration characterizations mediated by 
integrated effects of multiple PYAGs have not yet been 
comprehensively recognized in ovarian cancer. Here, we 
firstly revealed universal alterations in PYAGs at the tran-
scriptional and genetic heterogeneity in OC, and found 
that different expression of PYAGs may be associated 
with regulation of genome variation. It has now been 
widely recognized that methylation modifications were 
involved in various cancer and antitumor effect of chem-
otherapy and immunotherapy. Therefore, we performed 
methylation analysis of 51 PYAGs and showed that 
AIM2, CASP1, CASP8, GSDMC and NLRP6 exhibited 
hypomethylation in ovarian cancer, which may provide a 
new theory to explore the methylation of above five genes 
to improve potential antitumor efficacy of OC. Then we 
identified two distinct PACs based on the expression 
of PYAGs in OC, showing that PAC1 was character-
ized by immune fully-activated biological behaviors and 
pathways, including natural killer cell mediated cyto-
toxicity, cytokine-cytokine receptor interaction, T and 
B cell receptor signaling pathway, Toll-like and NOD-
like receptor signaling pathways, corresponding to an 
immune-inflamed phenotype. While PAC2 was mainly 
charactered by immune suppression biological process, 
corresponding to an immune-desert phenotype. We also 
identified PAC1 was significantly associated with ele-
vated activated immune cells and higher immune score, 
which confirmed the reliability of our classification of 
immune phenotypes for different PACs. Therefore, PAC1 
presented immune activated characteristics and survival 
advantage, contributing to potential predictive value on 
immunotherapy advantages.

Furthermore, based on the prognostic significance and 
immune regulation of DEGs between two PACs, which 
were regarded as pyroptosis-related gene signatures, and 
then three pyroptosis gene subtypes were established and 
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Fig. 9  Validation of the expression levels of GSDMD and GZMB in ovarian cancer. A The OS between high and low GSDMD and GZMB in TCGA-OV 
and five GEO databases shown by Kaplan-Meier curve. B The correlation between GSDMD, GZMB and CD8 expression in TCGA-OV samples with 
Spearman analysis. C Expression of CD8 in three immune subtypes of ovarian cancer microarray cohort detected by immunohistochemistry (scale 
bar: 50 μm). D Differences in overall survival of three immune subtypes of ovarian cancer microarray cohort shown by Kaplan-Meier curve. E, 
F Expressions of CD8, GZMB and GSDMD in ovarian cancer microarray cohort detected by immunohistochemistry (scale bar: 50 μm). G Validation of 
the prognostic value of CD8, GZMB and GSDMD in ovarian cancer samples
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showed profound potential on prognostic prediction and 
immunotherapy response of OC, further playing a cru-
cial role in shaping different landscapes of TME. There-
fore, a comprehensive evaluation of pyroptosis subtypes 
will facilitate our understanding of TME cell-infiltrating 
characterization. Moreover, we established a trusty and 
effective Pyrsig scoring system to evaluate pyroptosis 
of individual patients with OC, PAC2 and gene clus-
ter C exhibited a higher Pyrsig score with poor survival, 
respectively. Subsequent studies highlighted that Pyrsig 
score could serve as a prognostic predictor in OC and 
significantly associated with different clinicopathologi-
cal characteristics, immune infiltration of TME, immune 
checkpoints, chemotherapeutic drug susceptibility and 
immunotherapy, indicating a predictive advantage in 
precision immunotherapy for ovarian cancer, which can 
be employed for prognosis stratification of patients with 
OC, deepening our understanding of pyroptosis molec-
ular mechanism and providing new ideas for targeted 
therapies.

We also revealed the relative abundance of 22 
immune cells and immune-related molecules displayed 
significant differences in the two PACs (PAC1 and 
PAC2), three gene clusters (A/B/C) and different Pyr-
sig score groups. Patients in PAC1 and low Pyrsig score 
group, with survival advantage, exhibited higher infil-
tration of M1 macrophages, activated memory CD4+ 
and CD8+ T cells, Gamma delta T cells, and activated 
NK cells. Amounting studies revealed that tumor-
associated macrophages (TAM) were classified into 
M1 macrophages (promoting antitumor immunity) or 
M2 macrophages (boosting tumor progression) [41]. 
M1 macrophage polarization in TME of OC played a 
tumoricidal role and was correlated with prolonged 
survival [42]. Infiltration of M2 macrophages could 
promote tumor cell migration and invasion [43], and 
exert the function of inhibiting immunity, predicting a 
worse survival outcome [44]. In accordance with pre-
vious publications, we observed that the abundance of 
M1 macrophages in PAC1 and low Pyrsig score group 
were higher than those in PAC2 and high Pyrsig score 
group. Increasing evidence has showed that activated 
T cells played a crucial role in anti-tumor immunity of 
OC [45, 46]. High gamma delta T cell infiltration upon 
stimulation could suppress tumor progression via mul-
tiple mechanisms in OC [47]. Furthermore, activated 
NK cells exhibited multiple functions on combating 
immune escape and directly and indirectly target cells 
clearance [48]. Patients in PAC1 and low Pyrsig score 
group showed higher infiltration of activated memory 
CD4+ and CD8+ T cells, gamma delta T cells and acti-
vated NK cells, suggesting a better prognosis and anti-
tumor immunity in OC development, we also validated 

GSDMD and GZMB were significantly associated 
infiltration of CD8+ T cells in OC with IHC. Infiltra-
tion of Tregs, as the potential immunosuppressive 
cells in immune system, promoted tumor progression 
through dampening antitumor immunity and boost-
ing angiogenic reprogramming of TME [49]. This were 
in line with our findings of higher Tregs infiltration in 
the TME of patients with PAC2 and high Pyrsig score 
group, which showed poor survival outcome.

The combination of chemotherapy with immunother-
apy, such as immune checkpoint blockade, demonstrates 
profound clinical application value for tumor treatment 
[50]. We showed significant differences in the efficacy of 
chemotherapeutic drug of different Pyrsig score groups, 
indicating that Pyrsig score could guide the precision 
usage of chemotherapeutic drugs. Immunotherapies with 
immune checkpoint inhibitors, such as PD-1, PD-L1, 
and CTLA-4 inhibitors, have demonstrated promising 
survival advantages in metastatic melanoma, metastatic 
renal cancer, and non-small cell lung cancer for the past 
few years [51–53]. In consideration of these develop-
ments, we observed that patients with a low Pyrsig score 
showed better response with anti-PD-L1 immunother-
apy, indicating that Pyrsig score could predict clinical 
outcome of patients with immune checkpoint blockade 
application. Our researches laid a foundation for a deeper 
understanding of patients’ antitumor immune response 
and provided guidance for more individualized and effec-
tive immunotherapy regimen with novel Pyrsig score.

However, there still existed several limitations of our 
research. First, all data and samples involved in this study 
were collected from public databases retrospectively. 
although we have avoided batch effect to the great extent, 
it still had some influence, which may have affected the 
efficacy and survival outcome of immunotherapy. Fur-
thermore, numerous prospective researches and addi-
tional experimental validations in vivo and vitro are still 
required to further confirm the underlying mechanisms 
of PYAGs.

Conclusion
In conclusion, we comprehensively explored genetic 
variations and transcriptional patterns of pyroptosis in 
1332 OC samples, and uncovered their potential role on 
prognostic value, clinicopathological characteristics and 
tumor immune microenvironment of ovarian cancer, we 
further revealed the superior advantage of Pyrsig score 
in targeted therapy and immunotherapy, and expressions 
of GSDMD and GZMB were associated with immune 
infiltration. These results highlighted that evaluating the 
pyroptosis subtypes of the individual tumor will con-
tribute to enhancing our cognition of TME infiltration 
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characteristics and yielded novel insights into personal-
ized and effective immunotherapeutic strategies.
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